Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The end of the beginning for pluripotent stem cells

Abstract

Pluripotent stem cells can be expanded seemingly indefinitely in culture, maintain a normal karyotype and have the potential to generate any cell type in the body. As such they represent an incredible resource for the repair of diseased or damaged tissues in our bodies. These cells also promise to open a new window into the embryonic development of our species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Origin of human pluripotent stem cells.
Figure 2: Differentiation of pluripotent stem cells into differentiated derivatives.
Figure 3: Isolation and separation of differentiated cells from pluripotent stem cells.

Similar content being viewed by others

References

  1. Stevens, L. C. The biology of teratomas. Adv. Morphogen. 6, 1–31 (1967).

    Article  CAS  Google Scholar 

  2. Jiang, L. I. & Nadeau, J. H. 129/Sv mice—a model system for studying germ cell biology and testicular cancer. Mammal. Genome 12, 89–94 (2001).

    Article  CAS  Google Scholar 

  3. Kleinsmtih, L. J. & Pierce, G. B. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 24, 1544–1552 (1964).

    Google Scholar 

  4. Stevens, L. C. Origin of testicular teratomas from primordial germ cells in mice. J. Natl Cancer Inst. 38, 549–552 (1967).

    CAS  PubMed  Google Scholar 

  5. Skakkebaek, N. E., Berthelsen, J. G., Giwercman, A. & Muller, J. Carcinoma-in-situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma. Int. J. Androl. 10, 19–28 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Andrews, P. W. Teratocarcinomas and human embryology: pluripotent human EC cell lines. Acta Pathol. Microbiol. Immunol. Scand. 106, 158–167; discussion 167–168 (1998).

    Article  CAS  Google Scholar 

  7. Kahan, B. W. & Ephrussi, B. Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma. J. Natl Cancer Inst. 44, 1015–1036 (1970).

    CAS  PubMed  Google Scholar 

  8. Rosenthal, M. D., Wishnow, R. M. & Sato, G. H. In vitro growth and differentiation of clonal populations of multipotential mouse cells derived from a transplantable testicular teratocarcinoma. J. Natl Cancer Inst. 44, 1001–1014 (1970).

    CAS  PubMed  Google Scholar 

  9. Evans, M. J. The isolation and properties of a clonal tissue culture strain of pluripotent mouse teratoma cells. J. Embryol. Exp. Morphol. 28, 163–176 (1972).

    CAS  PubMed  Google Scholar 

  10. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Resnick, J. L., Bixler, L. S., Cheng, L. & Donovan, P. J. Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550–551 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Matsui, Y., Zsebo, K. & Hogan, B. L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Shamblott, M. J. et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl Acad. Sci. USA 95, 13726–13731 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A. & Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnol. 18, 399–404 (2000).

    Article  CAS  Google Scholar 

  17. Thomson, J. A. et al. Isolation of a primate embryonic stem cell line. Proc. Natl Acad. Sci. USA 92, 7844–7848 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thomson, J. A. et al. Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol. Reprod. 55, 254–259 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Pera, M. F., Reubinoff, B. & Trounson, A. Human embryonic stem cells. J. Cell Sci. 113, 5–10 (2000).

    CAS  PubMed  Google Scholar 

  20. Pesce, M., Gross, M. K. & Scholer, H. R. In line with our ancestors: Oct-4 and the mammalian germ. BioEssays 20, 722–732 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet. 24, 372–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Martin, G. R. Teratocarcinomas and mammalian embryogenesis. Science 209, 768–776 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Smith, A. in Stem Cell Biology 205–230 (Cold Spring Harbor Laboratory Press, 2001).

    Google Scholar 

  25. Bradley, A., Evans, M., Kaufman, M. H. & Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Labosky, P. A., Barlow, D. P. & Hogan, B. L. Embryonic germ cell lines and their derivation from mouse primordial germ cells. Ciba Found. Symp. 182, 157–168; discussion 168–178 (1994).

    CAS  PubMed  Google Scholar 

  27. Labosky, P. A., Barlow, D. P. & Hogan, B. L. Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development 120, 3197–3204 (1994).

    CAS  PubMed  Google Scholar 

  28. Stewart, C. L., Gadi, I. & Bhatt, H. Stem cells from primordial germ cells can reenter the germ line. Dev. Biol. 161, 626–628 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Brinster, R. L. The effect of cells transferred into the mouse blastocyst on subsequent development. J. Exp. Med. 140, 1049–1056 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Illmensee, K. & Mintz, B. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc. Natl Acad. Sci. USA 73, 549–553 (1976).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Papaioannou, V. E., Gardner, R. L., McBurney, M. W., Babinet, C. & Evans, M. J. Participation of cultured teratocarcinoma cells in mouse embryogenesis. J. Embryol. Exp. Morphol. 44, 93–104 (1978).

    CAS  PubMed  Google Scholar 

  32. Papaioannou, V. E., McBurney, M. W., Gardner, R. L. & Evans, M. J. Fate of teratocarcinoma cells injected into early mouse embryos. Nature 258, 70–73 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Nishikawa, S. I., Nishikawa, S., Hirashima, M., Matsuyoshi, N. & Kodama, H. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125, 1747–1757 (1998).

    CAS  PubMed  Google Scholar 

  34. Wiles, M. V. & Keller, G. Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111, 259–267 (1991).

    CAS  PubMed  Google Scholar 

  35. Nakano, T., Kodama, H. & Honjo, T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Li, M., Pevny, L., Lovell-Badge, R. & Smith, A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol. 8, 971–974 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Muller, M. et al. Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J. 14, 2540–2548 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Eiges, R. et al. Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr. Biol. 11, 514–518 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C. & Vescovi, A. L. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283, 534–537 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A. & McKercher, S. R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Toma, J. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biol. 3, 778–784 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. McLaren, A. Mammalian germ cells: birth, sex, and immortality. Cell Struct. Funct. 26, 119–122 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Pesce, M. & Scholer, H. R. Oct-4: control of totipotency and germline determination. Mol. Reprod. Dev. 55, 452–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Campbell, K. H., McWhir, J., Ritchie, W. A. & Wilmut, I. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64–66 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R. & Yanagimachi, R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Weissman, I. L. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287, 1442–1446 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Tang, D. G., Tokumoto, Y. M., Apperly, J. A., Lloyd, A. C. & Raff, M. C. Lack of replicative senescence in cultured rat oligodendrocyte precursor cells. Science 291, 868–871 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Klug, M. G., Soonpaa, M. H., Koh, G. Y. & Field, L. J. Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J. Clin. Invest. 98, 216–224 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brustle, O. et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754–756 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. McDonald, J. W. et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nature Med. 5, 1410–1412 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Soria, B. et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49, 157–162 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Borlongan, C. V., Tajima, Y., Trojanowski, J. Q., Lee, V. M. & Sanberg, P. R. Cerebral ischemia and CNS transplantation: differential effects of grafted fetal rat striatal cells and human neurons derived from a clonal cell line. NeuroReport 9, 3703–3709 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Muir, J. K. et al. Terminally differentiated human neurons survive and integrate following transplantation into the traumatically injured rat brain. J. Neurotrauma 16, 403–414 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Kondziolka, D. et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55, 565–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Scholz, G., Pohl, I., Genschow, E., Klemm, M. & Spielmann, H. Embryotoxicity screening using embryonic stem cells in vitro: correlation to in vivo teratogenicity. Cells Tiss. Organs 165, 203–211 (1999).

    Article  CAS  Google Scholar 

  56. Amit, M. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Phillips, R. L. et al. The genetic program of hematopoietic stem cells. Science 288, 1635–1640 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Terskikh, A. V. et al. From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc. Natl Acad. Sci. USA 98, 7934–7939 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shamblott, M. J. et al. Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc. Natl Acad. Sci. USA 98, 113–118 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Tada, M., Tada, T., Lefebvre, L., Barton, S. C. & Surani, M. A. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 16, 6510–6520 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tada, T. et al. Epigenotype switching of imprintable loci in embryonic germ cells. Dev. Genes Evol. 207, 551–561 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Humpherys, D. et al. Epigenetic instability in ES cells and cloned mice. Science 293, 95–97 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl Acad. Sci. USA 90, 8424–8428 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nichols, J., Evans, E. P. & Smith, A. G. Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity. Development 110, 1341–1348 (1990).

    CAS  PubMed  Google Scholar 

  65. Xu, C. et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnol. 19, 971–974 (2001).

    Article  CAS  Google Scholar 

  66. Martin, G. R. & Evans, M. J. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc. Natl Acad. Sci. USA 72, 1441–1445 (1975).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Smith, A. G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Williams, R. L. et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Yoshida, K. et al. Maintenance of the pluripotential phenotype of embryonic stem cells through direct activation of gp130 signalling pathways. Mech. Dev. 45, 163–171 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Niwa, H., Burdon, T., Chambers, I. & Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Matsuda, T. et al. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J. 18, 4261–4269 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Burdon, T., Stracey, C., Chambers, I., Nichols, J. & Smith, A. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev. Biol. 210, 30–43 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to the colleagues whose work was not cited because of space constraints. We are indebted to L. F. Lock for critical comments on the manuscript and with L. Cheng, D. Panchision, H. Scholer, M. Bartolomei, L. Iacovitti and J. McLaughlin for helpful discussions. We thank M. Linkinhoker for help with the figures.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donovan, P., Gearhart, J. The end of the beginning for pluripotent stem cells. Nature 414, 92–97 (2001). https://doi.org/10.1038/35102154

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35102154

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing