Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Actin' up: RhoB in cancer and apoptosis

Abstract

RhoB is a small GTPase that regulates actin organization and vesicle transport. It is required for signalling apoptosis in transformed cells that are exposed to farnesyltransferase inhibitors, DNA-damaging agents or taxol. Genetic analysis in mice indicates that RhoB is dispensable for normal cell physiology, but that it has a suppressor or negative modifier function in stress-associated processes, including cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: How FTIs affect RhoB versus Ras proteins.
Figure 2: RhoB is needed for apoptosis of transformed cells after DNA damage.
Figure 3: Potential RhoB death effector pathways.

Similar content being viewed by others

References

  1. Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295–2322 (1997).

    Article  CAS  Google Scholar 

  2. Ridley, A. J. Rho proteins: linking signaling with membrane trafficking. Traffic 2, 303–310 (2001).

    Article  CAS  Google Scholar 

  3. Wu, W. J., Erickson, J. W., Lin, R. & Cerione, R. A. The β-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature 405, 800–804 (2000).

    Article  CAS  Google Scholar 

  4. Adamson, P., Paterson, H. F. & Hall, A. Intracellular localization of the p21rho proteins. J. Cell Biol. 119, 617–627 (1992).

    Article  CAS  Google Scholar 

  5. Lebowitz, P. F., Davide, J. P. & Prendergast, G. C. Evidence that farnesyltransferase inhibitors suppress Ras transformation by interfering with Rho activity. Mol. Cell. Biol. 15, 6613–6622 (1995).

    Article  CAS  Google Scholar 

  6. Zalcman, G. et al. Regulation of Ras-related RhoB protein expression during the cell cycle. Oncogene 10, 1935–1945 (1995).

    CAS  PubMed  Google Scholar 

  7. Lebowitz, P. & Prendergast, G. C. Functional interaction between RhoB and the transcription factor DB1. Cell Adhes Commun 6, 277–287 (1998).

    Article  CAS  Google Scholar 

  8. Michaelson, D. et al. Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J. Cell Biol. 152, 111–126 (2001).

    Article  CAS  Google Scholar 

  9. Mellor, J., Flynn, P., Nobes, C. D., Hall, A. & Parker, P. J. Prk1 is targeted to endosomes by the small GTPase, RhoB. J. Biol. Chem. 273, 4811–4814 (1998).

    Article  CAS  Google Scholar 

  10. Gampel, A., Parker, P. J. & Mellor, H. Regulation of epidermal growth factor receptor traffic by the small GTPase RhoB. Curr. Biol. 9, 955–958 (1999).

    Article  CAS  Google Scholar 

  11. Jahner, D. & Hunter, T. The ras-related gene RhoB is an immediate-early gene inducible by v-Fps, epidermal growth factor, and platelet-derived growth factor in rat fibroblasts. Mol. Cell. Biol. 11, 3682–3690 (1991).

    Article  CAS  Google Scholar 

  12. Fritz, G., Kaina, B. & Aktories, K. The ras-related small GTP-binding protein RhoB is immediate-early inducible by DNA damaging treatments. J. Biol. Chem. 270, 25172–25177 (1995).

    Article  CAS  Google Scholar 

  13. Engel, M. E., Datta, P. K. & Moses, H. L. RhoB is stabilized by transforming growth factor-β and antagonizes transcriptional activation. J. Biol. Chem. 273, 9921–9926 (1998).

    Article  CAS  Google Scholar 

  14. Trapp, T. et al. GTPase RhoB: an early predictor of neuronal death after transient focal ischemia in mice. Mol. Cell. Neurosci. 17, 883–894 (2001).

    Article  CAS  Google Scholar 

  15. Lebowitz, P., Casey, P. J., Prendergast, G. C. & Thissen, J. Farnesyltransferase inhibitors alter the prenylation and growth-stimulating function of RhoB. J. Biol. Chem. 272, 15591–15594 (1997).

    Article  CAS  Google Scholar 

  16. Prendergast, G. C. et al. Critical role of Rho in cell transformation by oncogenic Ras. Oncogene 10, 2289–2296 (1995).

    CAS  PubMed  Google Scholar 

  17. Du, W., Lebowitz, P. & Prendergast, G. C. Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol. Cell. Biol. 19, 1831–1840 (1999).

    Article  CAS  Google Scholar 

  18. Du, W. & Prendergast, G. C. Geranylgeranylated RhoB mediates inhibition of human tumor cell growth by farnesyltransferase inhibitors. Cancer Res. 59, 5492–5496 (1999).

    CAS  PubMed  Google Scholar 

  19. Chen, Z. et al. Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice. J. Biol. Chem. 275, 17974–17978 (2000).

    Article  CAS  Google Scholar 

  20. Liu, A.-X., Rane, N., Liu, J.-P. & Prendergast, G. C. RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. Mol. Cell. Biol. 21, 6906–6912 (2001).

    Article  CAS  Google Scholar 

  21. Khosravi-Far, R., Solski, P. A., Clark, G. J., Kinch, M. S. & Der, C. J. Activation of Rac1, RhoA, and mitogen-activated protein kinase are required for Ras transformation. Mol. Cell. Biol. 15, 6443–6453 (1995).

    Article  CAS  Google Scholar 

  22. van Golen, K. L., Wu, Z.-F., Qiao, X. T., Bao, L. W. & Marajver, S. D. RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res. 60, 5832–5838 (2000).

    CAS  PubMed  Google Scholar 

  23. Lebowitz, P. F. & Prendergast, G. C. Non-Ras targets for farnesyltransferase inhibitors: focus on Rho. Oncogene 17, 1439–1447 (1998).

    Article  CAS  Google Scholar 

  24. Prendergast, G. C. Farnesyltransferase inhibitors: antineoplastic mechanism and clinical prospects. Curr. Opin. Cell Biol. 12, 166–173 (2000).

    Article  CAS  Google Scholar 

  25. Cox, A. D. & Der, C. J. Farnesyltransferase inhibitors and cancer treatment: targeting simply Ras? Biochim. Biophys. Acta 1333, F51–F71 (1997).

    CAS  Google Scholar 

  26. Prendergast, G. C. & Du, W. Targeting farnesyltransferase: is Ras relevant? Drug Resist. Updat 2, 81–84 (1999).

    Article  CAS  Google Scholar 

  27. Rowinsky, E. K., Windle, J. J. & Von Hoff, D. D. Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J. Clin. Oncol. 17, 3631–3652 (1999).

    Article  CAS  Google Scholar 

  28. Sebti, S. M. & Hamilton, A. D. Farnesyltransferase and geranylgeranyltransferase I inhibitors and cancer therapy: lessons from mechanism and bench-to-bedside translational studies. Oncogene 19, 6584–6593 (2000).

    Article  CAS  Google Scholar 

  29. Prendergast, G. C. & Oliff, A. Farnesyltransferase inhibitors: antineoplastic properties, mechanisms of action, and clinical prospects. Semin. Cancer Biol. 10, 443–452 (2000).

    Article  CAS  Google Scholar 

  30. Adjei, A. A. Blocking oncogenic Ras signaling for cancer therapy. J. Natl Cancer Inst. 93, 1062–1074 (2001).

    Article  CAS  Google Scholar 

  31. Prendergast, G. C. et al. Farnesyltransferase inhibition causes morphological reversion of ras-transformed cells by a complex mechanism that involves regulation of the actin cytoskeleton. Mol. Cell. Biol. 14, 4193–4202 (1994).

    Article  CAS  Google Scholar 

  32. Liu, A.-X., Du, W., Liu, J.-P., Jessell, T. M. & Prendergast, G. C. RhoB alteration is required for the apoptotic and antineoplastic responses to farnesyltransferase inhibitors. Mol. Cell. Biol. 20, 6105–6113 (2000).

    Article  CAS  Google Scholar 

  33. Kohl, N. E. et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nature Med. 1, 792–797 (1995).

    Article  CAS  Google Scholar 

  34. Fritz, G. & Kaina, B. RhoB encoding a UV-inducible ras-related small GTP-binding protein is regulated by GTPases of the rho family and independent of JNK, ERK, and p38 MAP kinase. J. Biol. Chem. 272, 30637–30644 (1997).

    Article  CAS  Google Scholar 

  35. Liu, A.-X., Cerniglia, G. J., Bernhard, E. J. & Prendergast, G. C. RhoB is required for the apoptotic response of neoplastically transformed cells to DNA damage. Proc. Natl Acad. Sci. USA 98, 6192–6197 (2001).

    Article  Google Scholar 

  36. Lowe, S. W., Ruley, H. E., Jacks, T. & Housman, D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 (1993).

    Article  CAS  Google Scholar 

  37. Bernhard, E. J. et al. The farnesyltransferase inhibitor FTI-277 radiosensitizes Hras-transformed rat embryo fibroblasts. Cancer Res. 56, 1727–1730 (1996).

    CAS  PubMed  Google Scholar 

  38. Bernhard, E. J. et al. Inhibiting Ras prenylation increases the radiosensitivity of human tumor cell lines with activating mutations of Ras oncogenes. Cancer Res. 58, 1754–1761 (1998).

    CAS  PubMed  Google Scholar 

  39. Fritz, G. & Kaina, B. Ras-related GTPase RhoB forces alkylation-induced apoptotic cell death. Biochem. Biophys. Res. Comm. 268, 784–789 (2000).

    Article  CAS  Google Scholar 

  40. Mendrysa, S. M. & Perry, M. E. The p53 tumor suppressor protein does regulate expression of its own inhibitor, MDM2, except under conditions of stress. Mol. Cell. Biol. 20, 2023–2030 (2000).

    Article  CAS  Google Scholar 

  41. Liu, J. P. & Jessell, T. M. A role for RhoB in the delamination of neural crest cells from the dorsal neural tube. Development 125, 5055–5067 (1998).

    CAS  PubMed  Google Scholar 

  42. Flynn, P., Mellor, H., Casamassima, A. & Parker, P. J. Rho GTPase control of protein kinase C-related protein kinase activation by 3-phosphoinositide-dependent protein kinase. J. Biol. Chem. 275, 11064–11070 (2000).

    Article  CAS  Google Scholar 

  43. Balendran, A. et al. PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr. Biol. 9, 393–404 (1999).

    Article  CAS  Google Scholar 

  44. Jiang, K. et al. The phosphoinositide 3-OH kinase/AKT2 pathway as a critical target for farnesyltransferase inhibitor-induced apoptosis. Mol. Cell. Biol. 20, 139–148 (2000).

    Article  Google Scholar 

  45. Liu, A.-X. & Prendergast, G. C. Geranylgeranylated RhoB is sufficient to mediate tissue-specific suppression of Akt kinase activity by farnesyltransferase inhibitors. FEBS Lett. 481, 205–208 (2000).

    Article  CAS  Google Scholar 

  46. Du, W., Liu, A. & Prendergast, G. C. Activation of the PI3K–AKT pathway masks the proapoptotic effect of farnesyltransferase inhibitors. Cancer Res. 59, 4808–4812 (1999).

    Google Scholar 

  47. Fritz, G. & Kaina, B. Ras-related GTPase RhoB represses NF-κB signaling. J. Biol. Chem. 276, 3115–3122 (2001).

    Article  CAS  Google Scholar 

  48. Montaner, S., Perona, R., Saniger, L. & Lacal, J. C. Multiple signalling pathways lead to the activation of the nuclear factor-αB by the Rho family of GTPases. J. Biol. Chem. 273, 12779–12785 (1998).

    Article  CAS  Google Scholar 

  49. Perona, R. et al. Activation of the nuclear factor-κB by Rho, Cdc42, and Rac-1 proteins. Genes Dev. 11, 463–475 (1997).

    Article  CAS  Google Scholar 

  50. Gnad, R., Kaina, B. & Fritz, G. Rho GTPases are involved in the regulation of NF-κB by genotoxic stress. Exp. Cell Res. 264, 244–249 (2001).

    Article  CAS  Google Scholar 

  51. Kato, T. et al. Localization of a mammalian homolog of diaphanous, mDia1, to the mitotic spindle in HeLa cells. J. Cell Sci. 114, 775–784 (2001).

    CAS  PubMed  Google Scholar 

  52. Miquel, K. et al. GGTI-298 induces G0-G1 block and apoptosis whereas FTI-277 causes G2-M enrichment in A549 cells. Cancer Res. 57, 1846–1850 (1997).

    CAS  PubMed  Google Scholar 

  53. Song, S. Y., Meszoely, I. M., Coffey, R. J., Pietenpol, J. A. & Leach, S. D. KRas-independent effects of the farnesyl transferase inhibitor L-744,832 on cyclin B1/cdc2 kinase activity, G2/M cell cycle progression and apoptosis in human pancreatic ductal adenocarcinoma cells. Neoplasia 2, 261–272 (2000).

    Article  CAS  Google Scholar 

  54. Ashar, H. R. et al. The farnesyl transferase inhibitor SCH 66336 induces a G2 → M or G1 pause in sensitive human tumor cell lines. Exp. Cell Res. 262, 17–27 (2001).

    Article  CAS  Google Scholar 

  55. Crespo, N. C., Ohkanda, J., Yen, T. J., Hamilton, A. D. & Sebti, S. M. The farnesyltransferase inhibitor, FTI-2153, blocks bipolar spindle formation and chromosome alignment and causes prometaphase accumulation during mitosis of human lung cancer cells. J. Biol. Chem. 276, 16161–16167 (2001).

    Article  CAS  Google Scholar 

  56. Gachet, Y., Tournier, S., Millar, J. B. A. & Hyams, J. S. A MAP kinase-dependent actin checkpoint ensures proper spindle orientation in fission yeast. Nature 412, 352–354 (2001).

    Article  CAS  Google Scholar 

  57. Fritz, G. & Kaina, B. Transcriptional activation of the small GTPase gene RhoB by genotoxic stress is regulated via a CCAAT element. Nucleic Acids Res. 29, 792–798 (2001).

    Article  CAS  Google Scholar 

  58. Prendergast, G. C. Mode of action of farnesyltransferase inhibitors. Lancet Oncology 1, 73 (2000).

    Article  CAS  Google Scholar 

  59. Clark, E. A., Golub, T. R., Lander, E. S. & Hynes, R. O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000).

    Article  CAS  Google Scholar 

  60. Ise, K. et al. Targeted deletion of the Hras gene decreases tumor formation in mouse skin carcinogenesis. Oncogene 19, 2951–2956 (2000).

    Article  CAS  Google Scholar 

  61. Suwa, H. et al. Overexpression of the RhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. Br. J. Cancer 77, 147–152 (1998).

    Article  CAS  Google Scholar 

  62. van Golen, K. L. et al. A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin. Cancer Res. 5, 2511–2519 (1999).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

CancerNet:

breast carcinoma

melanoma

ovarian carcinoma

pancreatic carcinoma

prostate cancer

 Genbank:

adenovirus E1A

 LocusLink:

actin

Akt

ATF2

Cdc42

GGT-I

IκB

integrins

mDia1

mDia2

NF-κB

p53

Pdk1

Prk1

Prk2

Ras

RhoA

RhoB

RhoB

RhoC

topoisomerase

 Medscape DrugInfo:

doxorubicin

taxol

Glossary

AKT

Also known as protein kinase B. This is a serine/threonine protein kinase activated by the phosphatidylinositol-3-OH kinase pathway that activates survival responses.

ANAPHASE-PROMOTING COMPLEX

(APC). This complex triggers chromosome separation at the end of metaphase in mitosis. It is inactivated by checkpoint pathways that are triggered by damage to the mitotic spindle or by kinetochore problems that cause chromosomes to be released from the spindle.

MOUSE EMBRYO FIBROBLASTS

(MEFs). These cells are widely used to characterize the gross effects of gene deletion because they can be readily cultured from mice, including knockout mice that do not survive to term.

NF-κB

A heterodimeric transcription factor that is regulated by a variety of extracellular stimuli, including many that regulate cell survival.

TAXOL

A chemotherapeutic agent that kills cancer cells in mitosis by stabilizing microtubules.

TRANSFORMATION

The processes through which normal cells acquire malignant character.

XENOGRAFT ASSAY

A tumour-formation assay in which heterologous tumour cells are grown in an immunologically compromised mouse, or other animal, often under the skin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prendergast, G. Actin' up: RhoB in cancer and apoptosis. Nat Rev Cancer 1, 162–168 (2001). https://doi.org/10.1038/35101096

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35101096

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing