Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Defining glial cells during CNS development

Abstract

Neuroglia are non-neuronal cells in the nervous system and are involved in virtually every aspect of neural function. Because of the ambiguity of glial function, the definition of glial cells relies chiefly on structural and biochemical characteristics. The use of molecular markers in identifying glial cells along their differentiation pathways is further complicated by recent findings that many of the molecules are also expressed by cells of the neuronal lineage. So, how specific are glial markers and how can a glial cell be defined during development?

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphological and antigenic markers for oligodendroglia during development.
Figure 2: Detection of GFAP in neuroepithelial cells.

Similar content being viewed by others

References

  1. Skoff, R. P., Price, D. L. & Stocks, A. Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. II. Time of origin. J. Comp. Neurol. 169, 313–334 (1976).

    Article  CAS  Google Scholar 

  2. Chandross, K. J. et al. Identification and characterization of early glial progenitors using a transgenic selection strategy. J. Neurosci. 19, 759–774 (1999).

    Article  CAS  Google Scholar 

  3. Zhou, Q., Wang, S. & Anderson, D. J. Identification of a novel family of oligodendrocyte lineage-specific basic helix–loop–helix transcription factors. Neuron 25, 331–343 (2000).

    Article  CAS  Google Scholar 

  4. Rao, M. S., Noble, M. & Mayer-Proschel, M. A tripotential glial precursor is present in the developing spinal cord. Proc. Natl Acad. Sci. USA 95, 3996–4001 (1998).

    Article  CAS  Google Scholar 

  5. Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–83 (1972).

    Article  CAS  Google Scholar 

  6. Voigt, T. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J. Comp. Neurol. 289, 74–88 (1989).

    Article  CAS  Google Scholar 

  7. Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000).

    CAS  PubMed  Google Scholar 

  8. Misson, J.-P., Edwards, M. A., Yamamoto, M. & Caviness, V. S. Identification of radial glial cells within the developing murine central nervous system: studies based upon a new immunohistochemical marker. Brain Res. Dev. Brain Res. 44, 95–108 (1988).

    Article  CAS  Google Scholar 

  9. Seidman, K. J., Teng, A. L., Rosenkopf, R., Spilotro, P. & Weyhenmeyer, J. A. Isolation, cloning and characterization of a putative type-1 astrocyte cell line. Brain Res. 753, 16–26 (1997).

    Article  Google Scholar 

  10. Mi, H. & Barres, B. A. Purification and characterization of astrocyte precursor cells in the developing rat optic nerve. J. Neurosci. 19, 1049–1061 (1999).

    Article  CAS  Google Scholar 

  11. Miller, R. H. & Ono, K. Morphological analysis of the early stages of oligodendrocyte development in the vertebrate central nervous system. Microsc. Res. Tech. 41, 441–453 (1998).

    Article  CAS  Google Scholar 

  12. Sommer, I. & Schachner, M. Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev. Biol. 83, 311–327 (1981).

    Article  CAS  Google Scholar 

  13. Schwarz, A. & Futerman, A. H. Determination of the localization of gangliosides using anti-ganglioside antibodies: comparison of fixation methods. J. Histochem. Cytochem. 45, 611–618 (1997).

    Article  CAS  Google Scholar 

  14. McLendon, R. E. & Bigner, D. D. Immunohistochemistry of the glial fibrillary acidic protein: basic and applied considerations. Brain Pathol. 4, 221–228 (1994).

    Article  CAS  Google Scholar 

  15. Shamblott, M. J. et al. Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc. Natl Acad. Sci. USA 98, 113–118 (2001).

    Article  CAS  Google Scholar 

  16. Zhang, S.-C., Wernig, M., Duncan, I. D., Brüstle, O. & Thomson, J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnol. (in the press).

  17. Eng, L. F., Ghirnikar, R. S. & Lee, Y. L. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem. Res. 25, 1439–1451 (2000).

    Article  Google Scholar 

  18. Eisenbarth, G. S., Walsh, F. S. & Nirenberg, M. Monoclonal antibody to a plasma membrane antigen of neurons. Proc. Natl Acad. Sci. USA 76, 4913–4917 (1979).

    Article  CAS  Google Scholar 

  19. Raff, M. C., Miller, R. H. & Noble, M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303, 390–396 (1983).

    Article  CAS  Google Scholar 

  20. Satoh, J. & Kim, S. U. Ganglioside markers GD3, GD2, and A2B5 in fetal human neurons and glial cells in culture. Dev. Neurosci. 17, 137–148 (1995).

    Article  CAS  Google Scholar 

  21. Zhang, S.-C., Ge, B. & Duncan, I. D. Tracing human oligodendroglial development in vitro. J. Neurosci. Res. 59, 421–429 (2000).

    Article  CAS  Google Scholar 

  22. Flax. J. D. et al. Engraftable human neural stem cells respond to developmental cures, replace neurons, and express foreign genes. Nature Biotechnol. 16, 1033–1039 (1998).

    Article  CAS  Google Scholar 

  23. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  Google Scholar 

  24. Laywell, E. D., Rakic, P., Kukekov, V. G., Holland, E. C. & Steindler, D. A. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl Acad. Sci. USA 97, 13883–13888 (2000).

    Article  CAS  Google Scholar 

  25. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    Article  CAS  Google Scholar 

  26. Williams, B. P., Read, J. & Price, J. The generation of neurons and oligodendrocytes from a common precursor cell. Neuron 7, 685–693 (1991).

    Article  CAS  Google Scholar 

  27. Mizuguchi, R. et al. Combinatorial roles of Olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 31, 757–771 (2001).

    Article  CAS  Google Scholar 

  28. Zhou, Q., Choi, G. & Anderson, D. J. The bHLH transcription factor Oligo2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31, 791–807 (2001).

    Article  CAS  Google Scholar 

  29. Nishiyama, A., Chang, A. & Trapp, B. D. NG2+ glial cells: a novel glial cell population in the adult brain. J. Neuropathol. Exp. Neurol. 58, 1113–1124 (1999).

    Article  CAS  Google Scholar 

  30. Geschwind, D. H. et al. A genetic analysis of neural progenitor differentiation. Neuron 29, 325–339 (2001).

    Article  CAS  Google Scholar 

  31. Kornblum, H. I. & Geschwind, D. H. Molecular markers in CNS stem cell research: hitting a moving target. Nature Rev. Neurosci.. 2, 843–846 (2001).

    Article  CAS  Google Scholar 

  32. Sidhu, S. S. Phage display in pharmaceutical biotechnology. Curr. Opin. Biotechnol. 11, 610–616 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank S. Fedoroff and A. Messing for constructive criticisms and suggestions, and B. Lyons for preparation of the figures.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

astrocyte-specific glutamate transporter

brain lipid-binding protein

CNPase

GFAP

myelin-associated glycoprotein

myelin basic protein

Musashi-1

nestin

NG2

Olig1

Olig2

PDGFRα

proteolipid protein

RC2

vimentin

FURTHER INFORMATION

The Waisman Center

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, SC. Defining glial cells during CNS development. Nat Rev Neurosci 2, 840–843 (2001). https://doi.org/10.1038/35097593

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35097593

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing