Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From charcot to lou gehrig: deciphering selective motor neuron death in als

Key Points

  • The most common motor neuron disease in adults is amyotrophic lateral sclerosis (ALS). The primary hallmark of ALS is selective killing of motor neurons, which initiates, in mid-life, a progressive paralysis. The causes of almost all occurrences of the disease remain unknown. Most instances do not have any apparent genetic linkage (sporadic ALS), but the disease is inherited in a dominant manner in the remaining 5–10% of cases (familial ALS). Four principal ideas have been put forward to account for motor neuron death in ALS: oxidative damage, axonal strangulation from the disorganization of neurofilaments, toxicity from intracellular aggregates and/or a failure of protein folding, and excitotoxic death arising from the mishandling of glutamate.

  • The idea that oxidative damage is involved in ALS was prompted by the discovery that mutations in superoxide dismutase 1 (SOD1) are a primary cause of the disease. However, changes in dismutase activity do not explain cell death; rather, the mutations confer SOD1 with toxic properties.

  • An involvement of axonal strangulation is supported by the abnormal accumulation of neurofilaments in cases of sporadic and familial ALS. Deficits in slow axonal transport arise early on in ALS, and neurofilament mutations can be direct causes of motor neuron death in mice.

  • The presence of intracellular aggregates is a common feature of familial ALS. It has been proposed that these aggregates might be toxic, and that toxicity might arise from protein misfolding mediated by mutant SOD1. The mutant SOD1 chronically ties up chaperones that are needed for catalysing the folding of other proteins, whereas ubiquitin-mediated protein degradation might be choked by those same aggregates.

  • Repetitive motor neuron firing can lead to excitotoxic death if glutamate release is not handled properly at the dendrites of upper and lower motor neurons. Indeed, ALS has been associated with reductions in the level of glial glutamate transporters. This defect might lead to the abnormal accumulation of the neurotransmitter glutamate and to glutamate-mediated neuronal death.

  • Molecular genetics in mice have highlighted the selective sensitivity of motor neurons to minor disturbances in the induction of vascular endothelial cell growth factor (VEGF). So, mice that lack the ability to induce the expression of VEGF when oxygen levels are low show ALS-like neuropathology. VEGF might act directly on motor neurons as a neurotrophic factor, or might act instead by regulating blood supply to motor neurons.

  • Recently, a second gene relevant to ALS — a putative guanine exchange factor for a G protein that is unknown at present — has been identified. Mutations of this gene, termed ALS2, provoke an early-onset, recessive, slowly progressing form of ALS.

  • Many different drugs have been tested to try to alleviate the symptoms of patients with ALS, but none has proved to be effective. Our more recent insights into the mechanisms of this disease are already guiding the exploration for potential new treatments, including growth factors, regulators of glutamate-mediated transmission and stem cell therapies.

Abstract

Since its description by Charcot more than 130 years ago, the mechanism underlying the characteristic selective degeneration and death of motor neurons in amyotrophic lateral sclerosis has remained a mystery. Modern genetics has now identified mutations in two genes — SOD1 and ALS2 — as primary causes of the disease, and has implicated others as potential contributors. Insights into these abnormalities, together with errors in the handling of synaptic glutamate and the potential excitotoxic response that this alteration provokes, have provided leads for the development of new strategies to identify an as yet elusive remedy for this progressive, fatal disorder.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ALS-causing mutations lie throughout the SOD1 polypeptide.
Figure 2: SOD1 chemistry.
Figure 3: Models for SOD1-mediated toxicity linked to altered conformation and/or aggregation of mutant SOD1 subunits.
Figure 4: Neurofilament involvement in motor neuron disease.
Figure 5: Models for the action of VEGF in supporting motor neuron survival.
Figure 6: The specificity of the toxic effect of SOD1 mutations on motor neurons arises from the convergence of several risk factors.

Similar content being viewed by others

References

  1. Charcot, J. M. & Joffory, A. Deux cas d'atrophie musculaire progressive avec lesions de la substance grise et des faisceaux antero-lateraux de la moelle epiniere. Arch. Physiol. Neurol. Pathol. 2, 744–754 (1869).

    Google Scholar 

  2. Yoshida, S., Mulder, D. W., Kurland, L. T., Chu, C. P. & Okazaki, H. Follow-up study on amyotrophic lateral sclerosis in Rochester, Minn., 1925 through 1984. Neuroepidemiology 5, 61–70 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).Reported the landmark discovery that mutations in SOD1 are a primary cause of familial ALS.

    Article  CAS  PubMed  Google Scholar 

  4. Hirano, A., Donnenfeld, H., Sasaki, S. & Nakano, I. Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 43, 461–470 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Hirano, A. et al. Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 43, 471–480 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Bruijn, L. I. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281, 1851–1854 (1998).By using mouse genetics to increase or eliminate wild-type SOD1 (and its superoxide dismutase activity) in the presence of a familial, ALS-linked SOD1 mutant that itself had little enzymatic activity, these authors showed that toxicity was independent of SOD1 activity. In addition, they found aggregates containing SOD1 to be a common feature of SOD1-mutant-mediated disease arising from mutations with different chemical properties.

    Article  CAS  PubMed  Google Scholar 

  7. Mulder, D. W., Kurland, L. T., Offord, K. P. & Beard, C. M. Familial adult motor neuron disease: amyotrophic lateral sclerosis. Neurology 36, 511–517 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Longo, V. D., Gralla, E. B. & Valentine, J. S. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J. Biol. Chem. 271, 12275–12280 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Andersen, P. M., Morita, M. & Brown, R. H. Jr. in Amyotrophic Lateral Sclerosis (eds Brown, R. H., Meininger, V. & Swash, M.) 223–250 (Martin Dunitz, London, 2000).

    Google Scholar 

  10. Gaudette, M., Hirano, M. & Siddique, T. Current status of SOD1 mutations in familial amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 1, 83–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Andersen, P. M. Genetics of sporadic ALS. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 2, S37–S41 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Andersen, P. M. et al. Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase. Nature Genet. 10, 61–66 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Andersen, P. M. et al. Autosomal recessive adult-onset amyotrophic lateral sclerosis associated with homozygosity for Asp90Ala CuZn-superoxide dismutase mutation. A clinical and genealogical study of 36 patients. Brain 119, 1153–1172 (1996).

    Article  PubMed  Google Scholar 

  14. Deng, H. X. et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 261, 1047–1051 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Orrell, R., De Belleroche, J., Marklund, S., Bowe, F. & Hallewell, R. A novel SOD mutant and ALS. Nature 374, 504–505 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).Represents the first report of a mouse model of familial ALS arising from expression of a transgene encoding a familial-ALS-linked SOD1 mutant. Disease arose in this model despite a very significant elevation of overall SOD1 activity, providing the first evidence that the disease cannot be caused by a diminution of SOD1 activity.

    Article  CAS  PubMed  Google Scholar 

  17. Wong, P. C. et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116 (1995).Reported the second set of mouse models of SOD1-mediated disease. Disease arose from a mutant that retained nearly full enzymatic activity. With the initial report from Gurney et al . (reference 16 ), it was concluded that the toxicity of SOD1 mutants must arise from a toxic property of the mutant subunit, not from a reduction in superoxide dismutase activity.

    Article  CAS  PubMed  Google Scholar 

  18. Ripps, M. E., Huntley, G. W., Hof, P. R., Morrison, J. H. & Gordon, J. W. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 92, 689–693 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bruijn, L. I. et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Reaume, A. G. et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genet. 13, 43–47 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Borchelt, D. R. et al. Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc. Natl Acad. Sci. USA 91, 8292–8296 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bowling, A. C. et al. Superoxide dismutase concentration and activity in familial amyotrophic lateral sclerosis. J. Neurochem. 64, 2366–2369 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Cleveland, D. W., Laing, N., Hurse, P. V. & Brown, R. H. Jr. Toxic mutants in Charcot's sclerosis. Nature 378, 342–343 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Kostic, V., Jackson-Lewis, V., De Bilbao, F., Dubois-Dauphin, M. & Przedborski, S. Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 277, 559–562 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Vukosavic, S. et al. Delaying caspase activation by Bcl-2: a clue to disease retardation in a transgenic mouse model of amyotrophic lateral sclerosis. J. Neurosci. 20, 9119–9125 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, M. et al. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288, 335–339 (2000).By implantation of a pump to slowly release a broad-spectrum caspase inhibitor, this report showed that chronic caspase inhibition can significantly extend the lifespan of mice that develop disease from expression of a familial-ALS-linked SOD1 mutant. This not only confirmed that a cascade of caspase activation was a feature of SOD1-mediated disease, but showed that inhibiting such a cascade can extend lifespan.

    Article  CAS  PubMed  Google Scholar 

  27. Pasinelli, P., Houseweart, M. K., Brown, R. H. Jr & Cleveland, D. W. Caspase-1 and -3 are sequentially activated in motor neuron death in Cu,Zn superoxide dismutase-mediated familial amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 97, 13901–13906 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guegan, C., Vila, M., Rosoklija, G., Hays, A. P. & Przedborski, S. Recruitment of the mitochondrial-dependent apoptotic pathway in amyotrophic lateral sclerosis. J. Neurosci. 21, 6569–6576 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Corson, L. B., Strain, J. J., Culotta, V. C. & Cleveland, D. W. Chaperone-facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosis-linked superoxide dismutase mutants. Proc. Natl Acad. Sci. USA 95, 6361–6366 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beckman, J. S., Carson, M., Smith, C. D. & Koppenol, W. H. ALS, SOD and peroxynitrite. Nature 364, 584 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Ferrante, R. J. et al. Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Ann. Neurol. 42, 326–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Bruijn, L. I. et al. Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant. Proc. Natl Acad. Sci. USA 94, 7606–7611 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Andrus, P. K., Fleck, T. J., Gurney, M. E. & Hall, E. D. Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 71, 2041–2048 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Beal, M. F. et al. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol. 42, 644–654 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Jaarsma, D. et al. Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol. Dis. 7, 623–643 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Wiedau-Pazos, M. et al. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271, 515–518 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Singh, R. J. et al. Reexamination of the mechanism of hydroxyl radical adducts formed from the reaction between familial amyotrophic lateral sclerosis-associated Cu,Zn superoxide dismutase mutants and H2O2 . Proc. Natl Acad. Sci. USA 95, 6675–6680 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hall, E. D., Andrus, P. K., Oostveen, J. A., Fleck, T. J. & Gurney, M. E. Relationship of oxygen radical-induced lipid peroxidative damage to disease onset and progression in a transgenic model of familial ALS. J. Neurosci. Res. 53, 66–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Borchelt, D. R. et al. Superoxide dismutase 1 subunits with mutations linked to familial amyotrophic lateral sclerosis do not affect wild-type subunit function. J. Biol. Chem. 270, 3234–3238 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Crow, J. P., Sampson, J. B., Zhuang, Y., Thompson, J. A. & Beckman, J. S. Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J. Neurochem. 69, 1936–1944 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Estevez, A. G. et al. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286, 2498–2500 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Williamson, T. L. et al. Toxicity of ALS-linked SOD1 mutants. Science 288, 399–400 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Goto, J. J. et al. Loss of in vitro metal ion binding specificity in mutant copper–zinc superoxide dismutases associated with familial amyotrophic lateral sclerosis. J. Biol. Chem. 275, 1007–1014 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Facchinetti, F. et al. Lack of involvement of neuronal nitric oxide synthase in the pathogenesis of a transgenic mouse model of familial amyotrophic lateral sclerosis. Neuroscience 90, 1483–1492 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Doroudchi, M. M., Minotti, S., Figlewicz, D. A. & Durham, H. D. Nitrotyrosination contributes minimally to toxicity of mutant SOD1 associated with ALS. Neuroreport 12, 1239–1243 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Shaw, P. J., Ince, P. G., Falkous, G. & Mantle, D. Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann. Neurol. 38, 691–695 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Bowling, A. C., Schulz, J. B., Brown, R. H. Jr & Beal, M. F. Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J. Neurochem. 61, 2322–2325 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Dal Canto, M. C. & Gurney, M. E. Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am. J. Pathol. 145, 1271–1279 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kong, J. & Xu, Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J. Neurosci. 18, 3241–3250 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Culotta, V. C. et al. The copper chaperone for superoxide dismutase. J. Biol. Chem. 272, 23469–23472 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Wong, P. C. et al. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl Acad. Sci. USA 97, 2886–2891 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ferrante, R. J. et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 69, 2064–2074 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Johnston, J. A., Dalton, M. J., Gurney, M. E. & Kopito, R. R. Formation of high molecular weight complexes of mutant Cu,Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 97, 12571–12576 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mather, K. et al. Histochemical and immunocytochemical study of ubiquitinated neuronal inclusions in amyotrophic lateral sclerosis. Neuropathol. Appl. Neurobiol. 19, 141–145 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Leigh, P. N. et al. Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. Brain 114, 775–788 (1991).

    Article  PubMed  Google Scholar 

  56. Leigh, P. N. et al. Ubiquitin deposits in anterior horn cells in motor neurone disease. Neurosci. Lett. 93, 197–203 (1988).

    Article  CAS  PubMed  Google Scholar 

  57. Bruening, W. et al. Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J. Neurochem. 72, 693–699 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Durham, H. D., Roy, J., Dong, L. & Figlewicz, D. A. Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J. Neuropathol. Exp. Neurol. 56, 523–530 (1997).Reported the development of what might be the best in vitro model of SOD1-mediated toxicity. Expression of ALS-linked SOD1 mutants (following injection of genes that encode the mutants) in primary cultured neurons resulted in selective killing of motor, but not sensory, neurons. Mutant SOD1, but not similar injections of genes encoding wild-type SOD1, also gave SOD1 aggregates followed by motor neuron death, leading to the proposal that aggregates might have a role in mutant-mediated toxicity.

    Article  CAS  PubMed  Google Scholar 

  59. Rothstein, J. D. et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Gong, Y. H., Parsadanian, A. S., Andreeva, A., Snider, W. D. & Elliott, J. L. Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J. Neurosci. 20, 660–665 (2000).To examine which cells are the direct targets of toxicity by SOD1 mutants that are normally expressed ubiquitously, transgenic mice were generated to express an ALS-linked SOD1 mutant primarily in astroctyes, but not in motor neurons. This led to astrocytic pathology, but not to motor neuron degeneration or death. This finding indicates that toxicity arising directly from astroctyes is not sufficient for neuronal degeneration without mutant expression in other cell types, most probably the motor neurons themselves.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Williamson, T. L. et al. Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. Proc. Natl Acad. Sci. USA 95, 9631–9636 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Couillard-Despres, S. et al. Protective effect of neurofilament heavy gene overexpression in motor neuron disease induced by mutant superoxide dismutase. Proc. Natl Acad. Sci. USA 95, 9626–9630 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pramatarova, A., Laganiere, J., Roussel, J., Brisebois, K. & Rouleau, G. A. Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J. Neurosci. 21, 3369–3374 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carpenter, S. Proximal axonal enlargement in motor neuron disease. Neurology 18, 841–851 (1968).

    Article  CAS  PubMed  Google Scholar 

  65. Xu, Z., Cork, L. C., Griffin, J. W. & Cleveland, D. W. Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell 73, 23–33 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Cote, F., Collard, J. F. & Julien, J. P. Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 73, 35–46 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Couillard-Despres, S., Meier, J. & Julien, J. P. Extra axonal neurofilaments do not exacerbate disease caused by mutant Cu,Zn superoxide dismutase. Neurobiol. Dis. 7, 462–470 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Nguyen, M. D., Lariviere, R. C. & Julien, J. P. Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron 30, 135–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Kong, J. & Xu, Z. Overexpression of neurofilament subunit NF-L and NF-H extends survival of a mouse model for amyotrophic lateral sclerosis. Neurosci. Lett. 281, 72–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Williamson, T. L. & Cleveland, D. W. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nature Neurosci. 2, 50–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Willard, M. & Simon, C. Modulations of neurofilament axonal transport during the development of rabbit retinal ganglion cells. Cell 35, 551–559 (1983).

    Article  CAS  PubMed  Google Scholar 

  72. Al-Chalabi, A. et al. Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum. Mol. Genet. 8, 157–164 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Figlewicz, D. A. et al. Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum. Mol. Genet. 3, 1757–1761 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Tomkins, J. et al. Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS). Neuroreport 9, 3967–3970 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. De Jonghe, P. et al. Further evidence that neurofilament light chain gene mutations can cause Charcot–Marie–Tooth disease type 2E. Ann. Neurol. 49, 245–249 (2001).

    Article  PubMed  Google Scholar 

  76. Mersiyanova, I. V. et al. A new variant of Charcot–Marie–Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am. J. Hum. Genet. 67, 37–46 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu, Z. et al. Subunit composition of neurofilaments specifies axonal diameter. J. Cell Biol. 133, 1061–1069 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Kawamura, Y. et al. Morphometric comparison of the vulnerability of peripheral motor and sensory neurons in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 40, 667–675 (1981).

    Article  CAS  PubMed  Google Scholar 

  79. Lee, M. K., Marszalek, J. R. & Cleveland, D. W. A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron 13, 975–988 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Tanaka, K. et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 1699–1702 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Rothstein, J. D. et al. Excitatory amino acids in amyotrophic lateral sclerosis: an update. Ann. Neurol. 30, 224–225 (1991).

    Article  CAS  PubMed  Google Scholar 

  82. Rothstein, J. D. et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann. Neurol. 28, 18–25 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Shaw, P. J., Forrest, V., Ince, P. G., Richardson, J. P. & Wastell, H. J. CSF and plasma amino acid levels in motor neuron disease — elevation of CSF glutamate in a subset of patients. Neurodegeneration 4, 209–216 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Spreux-Varoquaux, O. et al. Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis. A reapprasial using a new HPLC method with coulometric detection in a large cohort of patients. J. Neurol. Sci. (in the press).

  85. Rothstein, J. D., Van Kammen, M., Levey, A. I., Martin, L. J. & Kuncl, R. W. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 38, 73–84 (1995).Represents the first in a series of reports linking a diminution in glutamate transport (itself arising from loss of the glutamate transporter EAAT2, originally named GLT-1) to sporadic ALS.

    Article  CAS  PubMed  Google Scholar 

  86. Lin, C. L. et al. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 20, 589–602 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Meyer, T. et al. The RNA of the glutamate transporter EAAT2 is variably spliced in amyotrophic lateral sclerosis and normal individuals. J. Neurol. Sci. 170, 45–50 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Honig, L. S., Chambliss, D. D., Bigio, E. H., Carroll, S. L. & Elliott, J. L. Glutamate transporter EAAT2 splice variants occur not only in ALS, but also in AD and controls. Neurology 55, 1082–1088 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Spencer, P. S. et al. Lathyrism: evidence for the role of the neuroexcitatory amino acid BOAA. Lancet 2, 1066–1067 (1986).

    Article  CAS  PubMed  Google Scholar 

  90. Spencer, P. S. et al. Guam ALS–PDC: possible causes. Science 262, 825–826 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. Nagano, I., Wong, P. C. & Rothstein, J. D. Nitration of glutamate transporters in transgenic mice with a familial amyotrophic lateral sclerosis-linked SOD1 mutation. Ann. Neurol. 40, 542 (1996).

    Google Scholar 

  92. Oosthuyse, B. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genet. 28, 131–138 (2001).By using gene replacement methods in mice, these investigators made the very surprising discovery that eliminating the ability of the VEGF gene promoter to respond to hypoxia provokes motor neuron disease in the fraction of animals that survive into adulthood. This raises the possibility that motor neurons are especially sensitive to hypoxia, which might contribute to sporadic disease or represent a genetic risk factor in familial disease.

    Article  CAS  PubMed  Google Scholar 

  93. Rabin, B. A. et al. Autosomal dominant juvenile amyotrophic lateral sclerosis. Brain 122, 1539–1550 (1999).

    Article  PubMed  Google Scholar 

  94. Chance, P. F. et al. Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34. Am. J. Hum. Genet. 62, 633–640 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hentati, A. et al. Linkage of a commoner form of recessive amyotrophic lateral sclerosis to chromosome 15q15–q22 markers. Neurogenetics 2, 55–60 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Hadano, S. et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nature Genet. 29, 166–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Yang, Y. et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nature Genet. 29, 160–165 (2001).References 96 and 97 identified mutations in a GEF for an as yet unidentified G protein as the primary cause of a recessively inherited form of ALS linked to human chromosome 2.

    Article  CAS  PubMed  Google Scholar 

  98. Ince, P. et al. Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathol. Appl. Neurobiol. 19, 291–299 (1993).

    Article  CAS  PubMed  Google Scholar 

  99. Al-Chalabi, A. et al. Recessive amyotrophic lateral sclerosis families with the D90A SOD1 mutation share a common founder: evidence for a linked protective factor. Hum. Mol. Genet. 7, 2045–2050 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Kunst, C. B., Messer, L., Gordon, J., Haines, J. & Patterson, D. Genetic mapping of a mouse modifier gene that can prevent ALS onset. Genomics 70, 181–189 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Kasarkis, E. J. et al. A controlled trial of recombinant methionyl human BDNF in ALS: The BDNF Study Group (Phase III). Neurology 52, 1427–1433 (1999).

    Article  Google Scholar 

  102. Akbar, M. T. et al. Expression of glial glutamate transporters GLT-1 and GLAST is unchanged in the hippocampus in fully kindled rats. Neuroscience 78, 351–359 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Borasio, G. D. et al. A placebo-controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis. European ALS/IGF-I Study Group. Neurology 51, 583–586 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Lai, E. C. et al. Effect of recombinant human insulin-like growth factor-I on progression of ALS. A placebo-controlled study. The North America ALS/IGF-I Study Group. Neurology 49, 1621–1630 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Bensimon, G., Lacomblez, L., Meininger, V. & The ALS/Riluzole Study Group. A controlled trial of riluzole in amyotrophic lateral sclerosis. N. Engl. J. Med. 330, 585–591 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. Lacomblez, L., Bensimon, G., Leigh, P. N., Guillet, P. & Meininger, V. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 347, 1425–1431 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Klivenyi, P. et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nature Med. 5, 347–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Andreassen, O. A. et al. Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. J. Neurochem. 77, 383–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Shinder, G. A., Lacourse, M. C., Minotti, S. & Durham, H. D. Mutant Cu/Zn-superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis. J. Biol. Chem. 276, 12791–12796 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Hosler, B. A. et al. Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22. J. Am. Med. Assoc. 284, 1664–1669 (2000).

    Article  CAS  Google Scholar 

  111. Siddique, T. et al. X-linked dominant locus for late-onset familial amyotrophic lateral sclerosis. Am. J. Hum. Genet. 63, A308 (1998).

    Google Scholar 

  112. Jung, C. et al. Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model. Neurosci. Lett. 304, 157–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Reinholz, M. M., Merkle, C. M. & Poduslo, J. F. Therapeutic benefits of putrescine-modified catalase in a transgenic mouse model of familial amyotrophic lateral sclerosis. Exp. Neurol. 159, 204–216 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Andreassen, O. A. et al. Effects of an inhibitor of poly(ADP-ribose) polymerase, desmethylselegiline, trientine, and lipoic acid in transgenic ALS mice. Exp. Neurol. 168, 419–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Jiang, F., DeSilva, S. & Turnbull, J. Beneficial effect of ginseng root in SOD-1 (G93A) transgenic mice. J. Neurol. Sci. 180, 52–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Andreassen, O. A., Dedeoglu, A., Klivenyi, P., Beal, M. F. & Bush, A. I. N-acetyl-l-cysteine improves survival and preserves motor performance in an animal model of familial amyotrophic lateral sclerosis. Neuroreport 11, 2491–2493 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Andreassen, O. A. et al. Mice with a partial deficiency of manganese superoxide dismutase show increased vulnerability to the mitochondrial toxins malonate, 3-nitropropionic acid, and MPTP. Exp. Neurol. 167, 189–195 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Trieu, V. N., Liu, R., Liu, X. P. & Uckun, F. M. A specific inhibitor of janus kinase-3 increases survival in a transgenic mouse model of amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 267, 22–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Upton-Rice, M. N., Cudkowicz, M. E., Mathew, R. K., Reif, D. & Brown, R. H. Jr. Administration of nitric oxide synthase inhibitors does not alter disease course of amyotrophic lateral sclerosis SOD1 mutant transgenic mice. Ann. Neurol. 45, 413–414 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Nagano, S., Ogawa, Y., Yanagihara, T. & Sakoda, S. Benefit of a combined treatment with trientine and ascorbate in familial amyotrophic lateral sclerosis model mice. Neurosci. Lett. 265, 159–162 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Gurney, M. E. et al. Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann. Neurol. 39, 147–157 (1996).

    Article  CAS  PubMed  Google Scholar 

  122. Dugan, L. L. et al. Carboxyfullerenes as neuroprotective agents. Proc. Natl Acad. Sci. USA 94, 9434–9439 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Desnuelle, C., Dib, M., Garrel, C. & Favier, A. A double-blind, placebo-controlled randomized clinical trial of α-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS Riluzole–Tocopherol Study Group. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 2, 9–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Hottinger, A. F., Fine, E. G., Gurney, M. E., Zurn, A. D. & Aebischer, P. The copper chelator d-penicillamine delays onset of disease and extends survival in a transgenic mouse model of familial amyotrophic lateral sclerosis. Eur. J. Neurosci. 9, 1548–1551 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Keep, M., Elmer, E., Fong, K. S. & Csiszar, K. Intrathecal cyclosporin prolongs survival of late-stage ALS mice. Brain Res. 894, 327–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Barneoud, P. & Curet, O. Beneficial effects of lysine acetylsalicylate, a soluble salt of aspirin, on motor performance in a transgenic model of amyotrophic lateral sclerosis. Exp. Neurol. 155, 243–251 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Frank, K. M., Coccia, C., Drachman, D. B. & Rothstein, J. D. COX-2 inhibition prolongs survival in a transgenic mouse model of ALS. Soc. Neurosci. Abstr. 27 (in the press).

  128. Haverkamp, L. J., Smith, R. G. & Appel, S. H. Trial of immunosuppression in amyotrophic lateral sclerosis using total lymphoid irradiation. Ann. Neurol. 36, 253–254 (1994).

    Article  CAS  PubMed  Google Scholar 

  129. Appel, S. H. et al. A double-blind study of the effectiveness of cyclosporine in amyotrophic lateral sclerosis. Arch. Neurol. 45, 381–386 (1988).

    Article  CAS  PubMed  Google Scholar 

  130. Mora, J. S. et al. Intrathecal administration of natural human interferon α in amyotrophic lateral sclerosis. Neurology 36, 1137–1140 (1986).

    Article  CAS  PubMed  Google Scholar 

  131. Patten, E. Therapeutic plasmapheresis and plasma exchange. Crit. Rev. Clin. Lab. Sci. 23, 147–175 (1986).

    Article  CAS  PubMed  Google Scholar 

  132. Harrington, H., Hallett, M. & Tyler, H. R. Ganglioside therapy for amyotrophic lateral sclerosis: a double-blind controlled trial. Neurology 34, 1083–1085 (1984).

    Article  CAS  PubMed  Google Scholar 

  133. Bradley, W. G. et al. A double-blind controlled trial of bovine brain gangliosides in amyotrophic lateral sclerosis. Neurology 34, 1079–1082 (1984).

    Article  CAS  PubMed  Google Scholar 

  134. Hallett, M., Harrington, H., Tyler, H. R., Flood, T. & Slater, N. Trials of ganglioside therapy for amyotrophic lateral sclerosis and diabetic neuropathy. Adv. Exp. Med. Biol. 174, 575–579 (1984).

    Article  CAS  PubMed  Google Scholar 

  135. Bradley, W. G. Double-blind controlled trial of purified brain gangliosides in amyotrophic lateral sclerosis and experience with peripheral neuropathies. Adv. Exp. Med. Biol. 174, 565–573 (1984).

    Article  CAS  PubMed  Google Scholar 

  136. Friedlander, R. M., Brown, R. H., Gagliardini, V., Wang, J. & Yuan, J. Inhibition of ICE slows ALS in mice. Nature 388, 31 (1997).

    Article  CAS  PubMed  Google Scholar 

  137. Prudlo, J. et al. Motor neuron cell death in a mouse model of FALS is not mediated by the p53 cell survival regulator. Brain Res. 879, 183–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Miller, R. G. et al. A clinical trial of verapamil in amyotrophic lateral sclerosis. Muscle Nerve 19, 511–515 (1996).

    Article  CAS  PubMed  Google Scholar 

  139. Miller, R. G. et al. Controlled trial of nimodipine in amyotrophic lateral sclerosis. Neuromuscul. Disord. 6, 101–104 (1996).

    Article  CAS  PubMed  Google Scholar 

  140. Slusher, B. S. et al. Naaladase inhibition increases survival and delays clinical symptoms in SOD transgenic model of ALS. Soc. Neurosci. Abstr. 26, 43.10 (2000).

    Google Scholar 

  141. Sutherland, M. L., Martinowich, K. & Rothstein, J. D. EAAT2 overexpression plays a neuroprotective role in the SOD1 G93A model of amyotrophic lateral sclerosis. Soc. Neurosci. Abstr. 27, (in the press).

  142. Plaitakis, A., Smith, J., Mandeli, J. & Yahr, M. D. Pilot trial of branched-chain amino acids in amyotrophic lateral sclerosis. Lancet 1, 1015–1018 (1988).

    Article  CAS  PubMed  Google Scholar 

  143. Mohajeri, M. H., Figlewicz, D. A. & Bohn, M. C. Intramuscular grafts of myoblasts genetically modified to secrete glial cell line-derived neurotrophic factor prevent motoneuron loss and disease progression in a mouse model of familial amyotrophic lateral sclerosis. Hum. Gene Ther. 10, 1853–1866 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Dreibelbis, J. E., Cudkowicz, M. E., Pastuszak, K. A., Smith, E. R. & Brown, R. H. Jr Intracisternal injection of bone morphogenic protein-7 at time of disease onset did not alter disease course in a transgenic mouse model of amyotrophic lateral sclerosis. Soc. Neurosci. Abstr. 26, 865.4 (2000).

    Google Scholar 

  145. Bordet, T. et al. Protective effects of cardiotrophin-1 adenoviral gene transfer on neuromuscular degeneration in transgenic ALS mice. Hum. Mol. Genet. 10, 1925–1933 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Sun, W. & Funakoshi, H. N. T. Hepatocyte growth factor gene transfer improves life span, motor function and motorneuronal death in an ALS transgenic mouse model. Soc. Neurosci. Abstr. 27, (in the press).

  147. Munsat, T. L. et al. Intrathecal thyrotropin-releasing hormone does not alter the progressive course of ALS: experience with an intrathecal drug delivery system. Neurology 42, 1049–1053 (1992).

    Article  CAS  PubMed  Google Scholar 

  148. Brooks, B. R., Sufit, R. L., Montgomery, G. K., Beaulieu, D. A. & Erickson, L. M. Intravenous thyrotropin-releasing hormone in patients with amyotrophic lateral sclerosis. Dose-response and randomized concurrent placebo-controlled pilot studies. Neurol. Clin. 5, 143–158 (1987).

    Article  CAS  PubMed  Google Scholar 

  149. Caroscio, J. T. et al. A double-blind, placebo-controlled trial of TRH in amyotrophic lateral sclerosis. Neurology 36, 141–145 (1986).

    Article  CAS  PubMed  Google Scholar 

  150. Trieu, V. N. & Uckun, F. M. Genistein is neuroprotective in murine models of familial amyotrophic lateral sclerosis and stroke. Biochem. Biophys. Res. Commun. 258, 685–688 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Norris, F. H., Denys, E. H. & Fallat, R. J. Trial of octacosanol in amyotrophic lateral sclerosis. Neurology 36, 1263–1264 (1986).

    Article  CAS  PubMed  Google Scholar 

  152. Munsat, T. L., Easterday, C. S., Levy, S., Wolff, S. M. & Hiatt, R. Amantadine and guanidine are ineffective in ALS. Neurology 31, 1054–1055 (1981).

    Article  CAS  PubMed  Google Scholar 

  153. Olarte, M. R., Gersten, J. C., Zabriskie, J. & Rowland, L. P. Transfer factor is ineffective in amyotrophic lateral sclerosis. Ann. Neurol. 5, 385–388 (1979).

    Article  CAS  PubMed  Google Scholar 

  154. Olson, W. H., Simons, J. A. & Halaas, G. W. Therapeutic trial of tilorone in ALS: lack of benefit in a double-blind, placebo-controlled study. Neurology 28, 1293–1295 (1978).

    Article  CAS  PubMed  Google Scholar 

  155. Fareed, G. C. & Tyler, H. R. The use of isoprinosine in patients with amyotrophic lateral sclerosis. Neurology 21, 937–940 (1971).

    Article  CAS  PubMed  Google Scholar 

  156. Ende, N., Weinstein, F., Chen, R. & Ende, M. Human umbilical cord blood effect on sod mice (amyotrophic lateral sclerosis). Life Sci. 67, 53–59 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Maragakis, N. J. et al. Transplanted neural stem cells are capable of engraftment and diffrentiation in transgenic mutant SOD1 mice. Soc. Neurosci. Abstr. 26, 668.3 (2000).

    Google Scholar 

Download references

Acknowledgements

We thank J. Liu and A. Hirano for kindly providing part b of figure 1 and part a of figure 4, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don W. Cleveland.

Supplementary information

Related links

Related links

DATABASES

LocusLink

ALS2

Bcl2

caspase 1

caspase 3

caspase 7

caspase 9

CCS

CDK5

EAAT2

HSP70

NF-H

NF-L

NF-M

nNOS

RCC1

SOD1

SOD2

VEGF

Medscape DrugInfo

riluzole

OMIM

Alzheimer's disease

amyotrophic lateral sclerosis

Huntington's disease

FURTHER INFORMATION

alsod.org

Protein Data Bank

Glossary

SPASTICITY

The persistent contraction of certain muscles, which causes stiffness and interferes with gait, movement or speech.

NEUROFILAMENT

A type of intermediate filament that is found only in neurons and serves as a cytoskeletal element that supports the axonal cytoplasm.

GUANINE EXCHANGE FACTOR

A protein that facilitates the exchange of GDP for GTP in the nucleotide-binding pocket of a GTP-binding protein.

FRAMESHIFT MUTATION

The addition or deletion of a nucleotide, which shifts the reading frame during translation such that the protein sequence from that point onwards is altered.

CASPASES

Cysteine proteases involved in apoptosis, which cleave at specific aspartate residues.

CHAPERONE

A protein that mediates the folding or assembly of another polypeptide, but does not form part of the completed structure, or participate in its biological function.

PROTEASOME

A protein complex responsible for degrading intracellular proteins that have been tagged for destruction by the addition of ubiquitin.

CELL AUTONOMOUS

A genetic trait in which only genotypically mutant cells show the mutant phenotype. In contrast, a cell non-autonomous trait is one in which genotypically mutant cells cause other cells (regardless of their genotype) to show a mutant phenotype.

PENETRANCE

The proportion of genotypically mutant organisms that show the mutant phenotype. If all genotypically mutant individuals show the mutant phenotype, then the genotype is said to be completely penetrant.

CHARCOT–MARIE–TOOTH DISEASE

A genetic neurological disease that is characterized by the degeneration of peripheral nerves and a slowly progressive atrophy of the muscles in the foot, lower leg, hand and forearm, and a mild loss of sensation in the limbs, fingers and toes. The first sign of the disease is generally a high-arched foot and gait disturbances.

PLECKSTRIN HOMOLOGY DOMAIN

A sequence of about 100 amino acids that is present in many signalling molecules. Pleckstrin is a protein of unknown function that was originally identified in platelets. It is a principal substrate of protein kinase C.

DBL HOMOLOGY DOMAIN

A sequence that is present in some guanine nucleotide exchange factors, originally identified in the protein DBL, a molecule of unknown function that was originally identified in a human diffuse B-cell lymphoma.

RHO

A Ras-related GTPase involved in controlling the polymerization of actin.

WOBBLER MOUSE

A mutant mouse that shows motor neuron degeneration and astrocyte reactivity in the spinal cord, and defects in spermatogenesis. The mutant gene has not been identified.

NEUROMUSCULAR DEGENERATION MOUSE

A mutant mouse that shows severe muscle atrophy due to progressive degeneration of spinal motor neurons. The responsible mutation has been localized to a gene known as Smbp2, which encodes a DNA-binding protein.

PROGRESSIVE MOTOR NEUROPATHY MOUSE

A mouse with an autosomal-recessive mutation that results in early-onset motor neuron disease, rapidly progressing hindlimb paralysis, severe muscular wasting and death. The mutant gene has not been identified.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleveland, D., Rothstein, J. From charcot to lou gehrig: deciphering selective motor neuron death in als . Nat Rev Neurosci 2, 806–819 (2001). https://doi.org/10.1038/35097565

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35097565

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing