Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Development

Asymmetric cell division in the Drosophila nrevous system

Key Points

  • Asymmetric cell division is an important mechanism for generating cell diversity in the Drosophila nervous system. Insights from this system could also help us to understand the role of asymmetric cell division in the vertebrate nervous system. Most neurons in Drosophila are generated from neural precursors — neuroblasts in the central nervous system and sensory organ precursors (SOPs) in the peripheral nervous system — as a result of stereotyped sequences of asymmetric cell divisions.

  • Neuroblasts divide to give rise to an apical neuroblast and a basal ganglion mother cell (GMC). Cell-fate determinants, such as Numb and Prospero, become localized to the basal cortex of the dividing neuroblast so that they are segregated into the GMC after division. SOPs undergo several rounds of asymmetric cell division to produce all the cells of a sensory organ, and Numb and Prospero are also important in this process.

  • The orientation of division is controlled by apical–basal polarity in neuroblasts, but by planar polarity in SOPs. Many of the genes involved in the control of the orientation of division have been identified, including bazooka, which is important in both neuroblasts and SOPs.

  • The polar segregation of determinants such as Numb is tightly coupled to the orientation of the spindle. In inscuteable loss-of-function mutants, the neuroblast spindle fails to align with the polarity cues. Evidence from budding yeast indicates that the cells may use a 'search-and-capture' mechanism to align the spindle, in which the spindle see-saws to and fro until microtubules find binding sites in the cell cortex.

  • The localization of cell-fate determinants to a crescent at one pole of the dividing cell seems to be a multistep process. In the case of Pon (Partner of Numb), the initial stage is independent of actomyosin, but later stages are not. Genes that are important for this process include lgl and dlg.

  • Crescent formation and spindle orientation occur at specified stages in the cell cycle. Disruption of the cell cycle prevents the correct segregation of determinants into crescents and orientation of the spindle.

  • Many questions remain to be answered about the molecular mechanisms that are involved in asymmetric cell division. Recent advances have improved our understanding of these processes in Drosophila, and further work should clarify whether, and how, asymmetric cell division contributes to the development of the vertebrate nervous system.

Abstract

Asymmetric cell division is a fundamental means of generating cell-fate diversity. Our understanding of the molecular mechanisms of asymmetric cell division in the Drosophila nervous system has advanced greatly in recent years, and insights gained from it might help to unravel the role of asymmetric cell division in the development of vertebrate nervous systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Asymmetric division of a Drosophila neuroblast.
Figure 2: Asymmetric cell divisions of the sensory organ precursor lineage.
Figure 3: Molecules involved in transducing polarity cues are deployed differently in neuroblasts and SOPs.
Figure 4: 'Search-and-capture' mechanism for spindle orientation in the budding yeast.

Similar content being viewed by others

References

  1. Stevens, C. F. Neuronal diversity: too many cell types for comfort? Curr. Biol. 8, R708–R710 (1998).

    Article  CAS  Google Scholar 

  2. Jan, Y. N. & Jan, L. Y. Maggot's hair and bug's eye: role of cell interactions and intrinsic factors in cell fate specification. Neuron 14, 1–5 (1995).

    Article  CAS  Google Scholar 

  3. Horvitz, H. R. & Herskowitz, I. Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68, 237–255 (1992).

    Article  CAS  Google Scholar 

  4. Guo, S. & Kemphues, K. J. Molecular genetics of asymmetric cleavage in the early Caenorhabditis elegans embryo. Curr. Opin. Genet. Dev. 6, 408–415 (1996).

    Article  CAS  Google Scholar 

  5. Jan, Y. N. & Jan, L. Y. Asymmetric cell division. Nature 392, 775–778 (1998).

    Article  CAS  Google Scholar 

  6. Lu, B., Jan, L. & Jan, Y. N. Control of cell divisions in the nervous system: symmetry and asymmetry. Annu. Rev. Neurosci. 23, 531–556 (2000).

    Article  CAS  Google Scholar 

  7. Matsuzaki, F. Asymmetric division of Drosophila neural stem cells: a basis for neural diversity. Curr. Opin. Neurobiol. 10, 38–44 (2000).

    Article  CAS  Google Scholar 

  8. Doe, C. Q. & Bowerman, B. Asymmetric cell division: fly neuroblast meets worm zygote. Curr. Opin. Cell Biol. 13, 68–75 (2001).

    Article  CAS  Google Scholar 

  9. Knoblich, J. A. Cell division: asymmetric cell division during animal development. Nature Rev. Mol. Cell Biol. 2, 11–20 (2001).

    Article  CAS  Google Scholar 

  10. Chenn, A. & McConnell, S. K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631–641 (1995).

    Article  CAS  Google Scholar 

  11. Qian, X., Goderie, S. K., Shen, Q., Stern, J. H. & Temple, S. Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 125, 3143–3152 (1998).

    CAS  PubMed  Google Scholar 

  12. Zhong, W., Feder, J. N., Jiang, M. M., Jan, L. Y. & Jan, Y. N. Asymmetric localization of a mammalian Numb homolog during mouse cortical neurogenesis. Neuron 17, 43–53 (1996).

    Article  CAS  Google Scholar 

  13. Wakamatsu, Y., Maynard, T. M., Jones, S. U. & Weston, J. A. NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 23, 71–81 (1999).

    Article  CAS  Google Scholar 

  14. Cayouette, M., Whitmore, A. V., Jeffery, G. & Raff, M. Asymmetric segregation of Numb in retinal development and the influence of the pigmented epithelium. J. Neurosci. 21, 5643–5651 (2001).

    Article  CAS  Google Scholar 

  15. Ready, D. F., Hanson, T. E. & Benzer, S. Development of the Drosophila retina, a neurocrystalline lattice. Dev. Biol. 53, 217–240 (1976).

    Article  CAS  Google Scholar 

  16. Lawrence, P. A. & Green, S. M. Cell lineage in the developing retina of Drosophila. Dev. Biol. 71, 142–152 (1979).

    Article  CAS  Google Scholar 

  17. Zipursky, S. L. & Rubin, G. M. Determination of neuronal cell fate: lessons from the R7 neuron of Drosophila. Annu. Rev. Neurosci. 17, 373–397 (1994).

    Article  CAS  Google Scholar 

  18. Rhyu, M. S., Jan, L. Y. & Jan, Y. N. Asymmetric distribution of Numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76, 477–491 (1994).The first report of an asymmetrically localized cell-fate determinant in mitotic somatic cells.

    Article  CAS  Google Scholar 

  19. Spana, E. P. & Doe, C. Q. The Prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121, 3187–3195 (1995).

    CAS  Google Scholar 

  20. Hirata, J., Nakagoshi, H., Nabeshima, Y. & Matsuzaki, F. Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature 377, 627–630 (1995).

    Article  CAS  Google Scholar 

  21. Knoblich, J. A., Jan, L. Y. & Jan, Y. N. Asymmetric segregation of Numb and Prospero during cell division. Nature 377, 624–627 (1995).

    Article  CAS  Google Scholar 

  22. Uemura, T., Shepherd, S., Ackerman, L., Jan, L. Y. & Jan, Y. N. numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58, 349–360 (1989).

    Article  CAS  Google Scholar 

  23. Guo, M., Jan, L. Y. & Jan, Y. N. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17, 27–41 (1996).

    Article  Google Scholar 

  24. Frise, E., Knoblich, J. A., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. The Drosophila Numb protein inhibits signaling of the Notch receptor during cell–cell interaction in sensory organ lineage. Proc. Natl Acad. Sci. USA 93, 11925–11932 (1996).

    Article  CAS  Google Scholar 

  25. Spana, E. P. & Doe, C. Q. Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron 17, 21–26 (1996).

    Article  CAS  Google Scholar 

  26. Buescher, M. et al. Binary sibling neuronal cell fate decisions in the Drosophila embryonic central nervous system are nonstochastic and require inscuteable-mediated asymmetry of ganglion mother cells. Genes Dev. 12, 1858–1870 (1998).

    Article  CAS  Google Scholar 

  27. Doe, C. Q., Chu-LaGraff, Q., Wright, D. M. & Scott, M. P. The prospero gene specifies cell fates in the Drosophila central nervous system. Cell 65, 451–464 (1991).

    Article  CAS  Google Scholar 

  28. Vaessin, H. et al. prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell 67, 941–953 (1991).

    Article  CAS  Google Scholar 

  29. Gho, M., Bellaiche, Y. & Schweisguth, F. Revisiting the Drosophila microchaete lineage: a novel intrinsically asymmetric cell division generates a glial cell. Development 126, 3573–3584 (1999).

    CAS  PubMed  Google Scholar 

  30. Lu, B., Ackerman, L., Jan, L. Y. & Jan, Y. N. Modes of protein movement that lead to the asymmetric localization of partner of Numb during Drosophila neuroblast division. Mol. Cell 4, 883–891 (1999).

    Article  CAS  Google Scholar 

  31. Kaltschmidt, J. A., Davidson, C. M., Brown, N. H. & Brand, A. H. Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nature Cell Biol. 2, 7–12 (2000).

    Article  CAS  Google Scholar 

  32. Roegiers, F., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. Two types of asymmetric divisions in the Drosophila sensory organ precursor cell lineage. Nature Cell Biol. 3, 58–67 (2001).

    Article  CAS  Google Scholar 

  33. Bellaïche, Y., Gho, M., Kaltschmidt, J. A., Brand, A. H. & Schweisguth, F. Frizzled regulates localization of cell-fate determinants and mitotic spindle rotation during asymmetric cell division. Nature Cell Biol. 3, 50–57 (2001).

    Article  Google Scholar 

  34. Nüsslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  Google Scholar 

  35. Tepass, U., Theres, C. & Knust, E. crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61, 787–799 (1990).

    Article  CAS  Google Scholar 

  36. Wodarz, A., Hinz, U., Engelbert, M. & Knust, E. Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 82, 67–76 (1995).

    Article  CAS  Google Scholar 

  37. Müller, H. A. & Wieschaus, E. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J. Cell Biol. 134, 149–163 (1996).

    Article  Google Scholar 

  38. Schober, M., Schaefer, M. & Knoblich, J. A. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402, 548–551 (1999).

    Article  CAS  Google Scholar 

  39. Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402, 544–547 (1999).References 38 and 39 report that Bazooka transmits apical–basal polarity from the epithelial cells to the neuroblasts.

    Article  CAS  Google Scholar 

  40. Kuchinke, U., Grawe, F. & Knust, E. Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr. Biol. 8, 1357–1365 (1998).

    Article  CAS  Google Scholar 

  41. Etemad-Moghadam, B., Guo, S. & Kemphues, K. J. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 83, 743–752 (1995).This paper reports the cloning of C. elegans PAR-3, an evolutionarily conserved molecule with important roles in asymmetric cell division and cell polarity.

    Article  CAS  Google Scholar 

  42. Tabuse, Y. et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125, 3607–3614 (1998).

    CAS  Google Scholar 

  43. Hung, T. J. & Kemphues, K. J. PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development 126, 127–135 (1999).

    CAS  Google Scholar 

  44. Petronczki, M. & Knoblich, J. A. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nature Cell Biol. 3, 43–49 (2001).

    Article  CAS  Google Scholar 

  45. Wodarz, A., Ramrath, A., Grimm, A. & Knust, E. Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J. Cell Biol. 150, 1361–1374 (2000).

    Article  CAS  Google Scholar 

  46. Lin, D. et al. A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol. 2, 540–547 (2000).

    Article  CAS  Google Scholar 

  47. Qiu, R. G., Abo, A. & Steven Martin, G. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCζ signaling and cell transformation. Curr. Biol. 10, 697–707 (2000).

    Article  CAS  Google Scholar 

  48. Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of Partner of Inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100, 399–409 (2000).

    Article  CAS  Google Scholar 

  49. Schaefer, M., Shevchenko, A. & Knoblich, J. A. A protein complex containing Inscuteable and the Gα-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr. Biol. 10, 353–362 (2000).

    Article  CAS  Google Scholar 

  50. Parmentier, M. L. et al. Rapsynoid/Partner of Inscuteable controls asymmetric division of larval neuroblasts in Drosophila. J. Neurosci. 20, RC84, 1–5 (2000).

    Article  Google Scholar 

  51. Gho, M. & Schweisguth, F. Frizzled signalling controls orientation of asymmetric sense organ precursor cell divisions in Drosophila. Nature 393, 178–181 (1998).

    Article  CAS  Google Scholar 

  52. Vinson, C. R. & Adler, P. N. Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature 329, 549–551 (1987).

    Article  CAS  Google Scholar 

  53. Shulman, J. M., Perrimon, N. & Axelrod, J. D. Frizzled signaling and the developmental control of cell polarity. Trends Genet. 14, 452–458 (1998).

    Article  CAS  Google Scholar 

  54. Lu, B., Usui, T., Uemura, T., Jan, L. & Jan, Y. N. Flamingo controls the planar polarity of sensory bristles and asymmetric division of sensory organ precursors in Drosophila. Curr. Biol. 9, 1247–1250 (1999).

    Article  CAS  Google Scholar 

  55. Bellaïche, Y. et al. The Partner of Inscuteable/Discs-large complex is required to establish planar polarity during asymmetric cell division in Drosophila. Cell 106, 355–366 (2001).This paper shows the versatility of the use of Pins, Insc and Bazooka in controlling asymmetric cell division in different neural precursors.

    Article  Google Scholar 

  56. Kraut, R., Chia, W., Jan, L. Y., Jan, Y. N. & Knoblich, J. A. Role of Inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383, 50–55 (1996).

    Article  CAS  Google Scholar 

  57. Bobola, N., Jansen, R. P., Shin, T. H. & Nasmyth, K. Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84, 699–709 (1996).

    Article  CAS  Google Scholar 

  58. Jansen, R. P., Dowzer, C., Michaelis, C., Galova, M. & Nasmyth, K. Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins. Cell 84, 687–697 (1996).

    Article  CAS  Google Scholar 

  59. Sil, A. & Herskowitz, I. Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 84, 711–722 (1996).

    Article  CAS  Google Scholar 

  60. Mitchison, T. J. & Kirschner, M. W. Properties of the kinetochore in vitro. II. Microtubule capture and ATP-dependent translocation. J. Cell Biol. 101, 766–777 (1985).

    Article  CAS  Google Scholar 

  61. Korinek, W. S., Copeland, M. J., Chaudhuri, A. & Chant, J. Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science 287, 2257–2259 (2000).

    Article  CAS  Google Scholar 

  62. Lee, L. et al. Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science 287, 2260–2262 (2000).References 61 and 62 provide insights into the search-and-capture mechanism used to align the spindle during mitosis in budding yeast.

    Article  CAS  Google Scholar 

  63. Bienz, M. Spindles cotton on to junctions, APC and EB1. Nature Cell Biol. 3, E67–E68 (2001).

    Article  CAS  Google Scholar 

  64. Lu, B., Roegiers, F., Jan, L. Y. & Jan, Y. N. Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 409, 522–525 (2001).This paper reports that it is possible to convert symmetric cell division to asymmetric cell division in epithelial cells by interfering with the adherens junction.

    Article  CAS  Google Scholar 

  65. Broadus, J. & Doe, C. Q. Extrinsic cues, intrinsic cues and microfilaments regulate asymmetric protein localization in Drosophila neuroblasts. Curr. Biol. 7, 827–835 (1997).

    Article  CAS  Google Scholar 

  66. Knoblich, J. A., Jan, L. Y. & Jan, Y. N. The N terminus of the Drosophila Numb protein directs membrane association and actin-dependent asymmetric localization. Proc. Natl Acad. Sci. USA 94, 13005–13010 (1997).

    Article  CAS  Google Scholar 

  67. Guo, S. & Kemphues, K. J. A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature 382, 455–458 (1996).

    Article  CAS  Google Scholar 

  68. Ohshiro, T., Yagami, T., Zhang, C. & Matsuzaki, F. Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature 408, 593–596 (2000).

    Article  CAS  Google Scholar 

  69. Peng, C. Y., Manning, L., Albertson, R. & Doe, C. Q. The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature 408, 596–600 (2000).References 68 and 69 show the involvement of Dlg and Lgl in the basal movement/targeting of the cell-fate determinants.

    Article  CAS  Google Scholar 

  70. Jacob, L., Opper, M., Metzroth, B., Phannavong, B. & Mechler, B. M. Structure of the l(2)gl gene of Drosophila and delimitation of its tumor suppressor domain. Cell 50, 215–225 (1987).

    Article  CAS  Google Scholar 

  71. Woods, D. F. & Bryant, P. J. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 66, 451–464 (1991).

    Article  CAS  Google Scholar 

  72. Gateff, E. Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200, 1448–1459 (1978).

    Article  CAS  Google Scholar 

  73. Strand, D. et al. The Drosophila lethal(2)giant larvae tumor suppressor protein forms homo-oligomers and is associated with nonmuscle myosin II heavy chain. J. Cell Biol. 127, 1361–1373 (1994).

    Article  CAS  Google Scholar 

  74. Strand, D., Raska, I. & Mechler, B. M. The Drosophila lethal(2)giant larvae tumor suppressor protein is a component of the cytoskeleton. J. Cell Biol. 127, 1345–1360 (1994).

    Article  CAS  Google Scholar 

  75. Woods, D. F., Hough, C., Peel, D., Callaini, G. & Bryant, P. J. Dlg protein is required for junction structure, cell polarity, and proliferation control in Drosophila epithelia. J. Cell Biol. 134, 1469–1482 (1996).

    Article  CAS  Google Scholar 

  76. Lu, B., Rothenberg, M., Jan, L. Y. & Jan, Y. N. Partner of Numb colocalizes with Numb during mitosis and directs Numb asymmetric localization in Drosophila neural and muscle progenitors. Cell 95, 225–235 (1998).

    Article  CAS  Google Scholar 

  77. Cai, Y., Chia, W. & Yang, X. A family of snail-related zinc finger proteins regulates two distinct and parallel mechanisms that mediate Drosophila neuroblast asymmetric divisions. EMBO J. 20, 1704–1714 (2001).

    Article  CAS  Google Scholar 

  78. Tio, M., Udolph, G., Yang, X. & Chia, W. cdc2 links the Drosophila cell cycle and asymmetric division machineries. Nature 409, 1063–1067 (2001).This paper shows that Cdc2 is an essential link between the cell-cycle machinery and events of asymmetric cell division.

    Article  CAS  Google Scholar 

  79. Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Roegiers and S. Barbel for help with the figures. We are both investigators of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuh-Nung Jan.

Related links

Related links

DATABASE LINKS

FlyBase

Apc

Apc2

aPKC

bazooka

cdc2

crumbs

dishevelled

dlg

Eb1

Escargot

flamingo

frizzled

Insc

lgl

Miranda

Notch

Numb

par-6

pebble

Pins

Pon

Prospero

Scribbled

Snail

stardust

string

Tau

Worniu

zipper

GenBank

MYO-2

par-3

PAR-6

LocusLink

APC

EB1

Saccharomyces Genome Database

Ash1

Bim1

Kar9

Myo4

Glossary

HOMEODOMAIN-CONTAINING PROTEINS

Proteins with a 60-amino-acid DNA-binding domain that comprises three α-helices.

EGF REPEAT

A motif with 50 amino acids, including six cysteine residues and a mainly β-sheet structure, found in growth factors and extracellular matrix proteins.

PDZ DOMAIN

A peptide-binding domain that is important for the organization of membrane proteins, particularly at cell–cell junctions, including synapses. They can bind to the carboxyl termini of proteins, or can form dimers with other PDZ domains. PDZ domains are named after the proteins in which these sequence motifs were originally identified (PSD95, Discs -large, zona occludens 1).

NOTUM

The dorsal or top surface of the thorax.

IMAGINAL DISC

A single-cell layer epithelial structure of the Drosophila larva that gives rise to wings, legs and other appendages.

RNA-MEDIATED INTERFERENCE

A process by which an introduced double-stranded RNA specifically silences the expression of genes through degradation of their cognate mRNA.

ADHERENS JUNCTIONS

Cell–cell or cell–matrix adhesive junctions that are linked to cytoskeletal microfilaments.

WD40 REPEAT

A repeat of 40 amino acids with a characteristic central tryptophan–aspartate motif.

ZINC FINGER

A protein module in which cysteine or cysteine–histidine residues coordinate a zinc ion. Zinc fingers are often used in DNA recognition and in protein–protein interactions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jan, YN., Jan, L. Asymmetric cell division in the Drosophila nrevous system. Nat Rev Neurosci 2, 772–779 (2001). https://doi.org/10.1038/35097516

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35097516

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing