Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A neurocognitive perspective on language: The declarative/procedural model

Key Points

  • Several models have been proposed to account for the neurocognitive basis of the mental lexicon (a repository of stored words) and the mental grammar (which captures the regularities of language). The declarative/procedural model argues that lexicon and language depend on two neural systems that are intensively studied in the context of memory: declarative and procedural memory.

  • The declarative/procedural model links lexicon with the declarative system and with brain structures in temporal/temporoparietal regions. On the other hand, the model links grammar with the procedural system, and with structures in the basal ganglia and frontal cortex.

  • The declarative/procedural model makes a set of specific predictions about the neurocognitive basis of lexicon and grammar, regarding their separability, computation, domain generality and localization. These predictions, which have been thoroughly tested in the context of the use of regular versus irregular word forms (walk–walked versus go–went), have been helpful in contrasting this model with other competing perspectives.

  • Several lines of evidence support the declarative/procedural model over alternative views. This evidence has come from psycholinguistic studies, the analysis of developmental disorders of language, neurological cases, haemodynamic studies and neurophysiological observations. Collectively, the data show a double dissociation. On the one hand, there is a link between lexicon, associative-memory markers, the knowledge of facts and events, and temporal/temporoparietal regions. On the other, there is a link between grammar, motor and cognitive skills, and structures in the frontal lobe and the basal ganglia.

  • The declarative/procedural model has several implications. First, studies of declarative and procedural memory should help to elucidate the neural bases of lexicon and grammar, and vice versa. Second, the model has clinical implications for people with developmental or adult-onset disorders of grammar, as they might recover through the memorization of complex forms using the declarative system. Last, the existence of systems that subserve language in humans and are homologous to systems present in other animals has implications for the evolution of language.

Abstract

What are the psychological, computational and neural underpinnings of language? Are these neurocognitive correlates dedicated to language? Do different parts of language depend on distinct neurocognitive systems? Here I address these and other issues that are crucial for our understanding of two fundamental language capacities: the memorization of words in the mental lexicon, and the rule-governed combination of words by the mental grammar. According to the declarative/procedural model, the mental lexicon depends on declarative memory and is rooted in the temporal lobe, whereas the mental grammar involves procedural memory and is rooted in the frontal cortex and basal ganglia. I argue that the declarative/procedural model provides a new framework for the study of lexicon and grammar.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Haemodynamic responses to syntactic and lexical/semantic violations detected by fMRI.

Similar content being viewed by others

References

  1. Chomsky, N. The Minimalist Program (MIT Press, Cambridge, Massachusetts, 1995).Extends the influential Government and Binding framework in theoretical linguistics.

    Google Scholar 

  2. Pinker, S. The Language Instinct (William Morrow, New York, 1994).A highly readable overview of language, arguing that it is dependent on innate mental constructs.

    Book  Google Scholar 

  3. Fodor, J. A. The Modularity of Mind: an Essay on Faculty Psychology (MIT Press, Cambridge, Massachusetts, 1983).A clearly reasoned claim that there are distinct mental 'modules' dedicated to different mental capacities.

  4. Elman, J. et al. Rethinking Innateness: a Connectionist Perspective on Development (MIT Press, Cambridge, Massachusetts, 1996).An overview of modern connectionism, arguing that traditional views of cognitive innateness are flawed.

  5. Gleason, J. B. & Ratner, N. B. (eds) Psycholinguistics (Harcourt Brace College Publishers, Fort Worth, 1998).

    Google Scholar 

  6. Goodglass, H. Understanding Aphasia (Academic, San Diego, California, 1993).

    Google Scholar 

  7. Damasio, A. R. & Damasio, H. Brain and language. Sci. Am. 267, 88–95 (1992).An important perspective on the relation between brain and language.

    Article  CAS  PubMed  Google Scholar 

  8. Ullman, M. T. et al. A neural dissociation within language: evidence that the mental dictionary is part of declarative memory, and that grammatical rules are processed by the procedural system. J. Cogn. Neurosci. 9, 266–276 (1997).Based on evidence from anterior and posterior aphasia, and from Alzheimer', Parkinson's and Huntington's diseases, it is argued that grammatical rules depend on a frontal/basal ganglia procedural system, whereas lexical items are stored in a temporal lobe declarative memory system.

    Article  CAS  PubMed  Google Scholar 

  9. Ullman, M. T. The declarative/procedural model of lexicon and grammar. J. Psycholinguist. Res. 30, 37–69 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Mishkin, M., Malamut, B. & Bachevalier, J. in Neurobiology of Learning and Memory (eds Lynch, G., McGaugh, J. L. & Weinburger, N. W.) 65–77 (Guilford, New York, 1984).A proposal that there are distinct memory systems.

    Google Scholar 

  11. Squire, L. R. & Zola, S. M. Structure and function of declarative and nondeclarative memory systems. Proc. Natl Acad. Sci. USA 93, 13515–13522 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Schacter, D. L. & Tulving, E. (eds) Memory Systems (MIT Press, Cambridge, Massachusetts, 1994).

  13. Goodale, M. A. in The New Cognitive Neurosciences (ed. Gazzaniga, M. S.) 365–378 (MIT Press, Cambridge, Massachusetts, 2000).A proposal that 'dorsal' and 'ventral' visual streams underlie distinct types of visual processing.

  14. Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J. Comp. Neurol. 350, 497–533 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Hodges, J. R. & Patterson, K. Semantic memory disorders. Trends Cogn. Sci. 1, 68–72 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Martin, A., Ungerleider, L. G. & Haxby, J. V. in The New Cognitive Neurosciences (ed. Gazzaniga, M. S.) 1023–1036 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  17. Buckner, R. L. in The New Cognitive Neurosciences (ed. Gazzaniga, M. S.) 817–828 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  18. Desmond, J. E., Gabrieli, J. D. E. & Glover, G. H. Dissociation of frontal and cerebellar activity in a cognitive task: evidence for a distinction between selection and search. Neuroimage 7, 368–376 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. De Renzi, E. in Handbook of Neuropsychology Vol. 2 (eds Boller, F. & Grafman, J.) 245–263 (Elsevier, New York, 1989).

    Google Scholar 

  20. Heilman, K. M., Watson, R. T. & Rothi, L. G. in Behavioral Neurology and Neuropsychology (eds Feinberg, T. E. & Farah, M. J.) 227–235 (McGraw-Hill, New York, 1997).

    Google Scholar 

  21. Hikosaka, O. et al. in The New Cognitive Neurosciences (ed. Gazzaniga, M. S.) 553–572 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  22. Rizzolatti, G., Fogassi, L. & Gallese, V. in The New Cognitive Neurosciences (ed. Gazzaniga, M. S.) 539–552 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  23. Willingham, D. B. A neuropsychological theory of motor skill learning. Psychol. Rev. 105, 558–584 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Alexander, G. E., Crutcher, M. D. & DeLong, M. R. in Progress in Brain Research Vol. 85 (eds Uylings, H. B. M., Van Eden, C. G., DeBruin, J. P. C., Corner, M. A. & Feenstra, M. G. P.) 119–146 (Elsevier, New York, 1990).A discussion of evidence that the basal ganglia are composed of parallel circuits that subserve distinct domains, and project to distinct frontal cortical regions.

    Google Scholar 

  25. Pinker, S. Words and Rules: the Ingredients of Language (Basic Books, New York, 1999).Focusing on evidence from regular and irregular morphology, especially in English past tense, it is argued that the mental lexicon and the mental grammar are distinct systems in the mind and brain.

    Google Scholar 

  26. Bresnan, J. Lexical–Functional Syntax (Blackwell, Oxford, 2001).

    Google Scholar 

  27. Levelt, W. J. M. Speaking: from Intention to Articulation (MIT Press, Cambridge, Massachusetts, 1989).

    Google Scholar 

  28. Frazier, L. in Attention and Performance Vol. 12 (ed. Coltheart, M.) 559–586 (Lawrence Erlbaum, Hillsdale, New Jersey, 1987).

  29. Halle, M. & Marantz, A. in The View from Building 20 (MIT Press, Cambridge, Massachusetts, 1993).

    Google Scholar 

  30. Caramazza, A., Berndt, R. S., Basili, A. G. & Koller, J. J. Syntactic processing deficits in aphasia. Cortex 17, 333–348 (1981).

    Article  CAS  PubMed  Google Scholar 

  31. Grodzinsky, Y. The neurology of syntax: language use without Broca's area. Behav. Brain Sci. 23, 1–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. MacDonald, M. C., Pearlmutter, N. J. & Seidenberg, M. S. Lexical nature of syntactic ambiguity resolution. Psychol. Rev. 101, 676–703 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Bates, E. & MacWhinney, B. in The Crosslinguistic Study of Sentence Processing (eds MacWhinney, B. & Bates, E.) 3–73 (Cambridge Univ. Press, Cambridge, UK, 1989).

    Google Scholar 

  34. Rumelhart, D.E. & McClelland, J.L. in Parallel Distributed Processing: Explorations in the Microstructures of Cognition Vol. 2 (eds McClelland, J.L., Rumelhart, D.E. & PDP Research Group) 216–271 (Bradford/MIT Press, Cambridge, Massachusetts, 1986).A seminal proposal that regular and irregular past tense forms are learned, represented and processed in a single connectionist network.

    Google Scholar 

  35. Joanisse, M. F. & Seidenberg, M. S. Impairments in verb morphology after brain injury: a connectionist model. Proc. Natl Acad. Sci. USA 96, 7592–7597 (1999).A connectionist model that attempts to simulate previous empirically-demonstrated neurological double dissociations between regular and irregular past tense forms.

    Article  CAS  PubMed  Google Scholar 

  36. Plunkett, K. & Marchman, V. U-shaped learning and frequency effects in a multi-layered perceptron: implications for child language acquisition. Cognition 38, 43–102 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Pinker, S. & Prince, A. Regular and irregular morphology and the psychological status of rules of grammar. Berkeley Linguist. Soc. 17, 230–251 (1991).

    Article  Google Scholar 

  38. Pinker, S. Rules of language. Science 253, 530–535 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Marcus, G. F. et al. Overregularization in language acquisition. Monogr. Soc. Res. Child Dev. 57, 1–165 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Ullman, M. T. The Computation of Inflectional Morphology. Thesis, Massachusetts Inst. Technol. (1993).

    Google Scholar 

  41. Prasada, S., Pinker, S. & Snyder, W. Some evidence that irregular forms are retrieved from memory but regular forms are rule-generated. 31st Annu. Meet. Psychonomics Soc. (New Orleans, 1990).

    Google Scholar 

  42. Prasada, S. & Pinker, S. Generalization of regular and irregular morphological patterns. Lang. Cogn. Processes 8, 1–56 (1993).

    Article  Google Scholar 

  43. Ullman, M. T. Acceptability ratings of regular and irregular past tense forms: evidence for a dual-system model of language from word frequency and phonological neighbourhood effects. Lang. Cogn. Processes 14, 47–67 (1999).

    Article  Google Scholar 

  44. Stemberger, J. P. & MacWhinney, B. in Theoretical Morphology: Approaches in Modern Linguistics (eds Hammond, M. & Noonan, M.) 101–116 (Academic Press, New York, 1988).

    Google Scholar 

  45. Van der Lely, H. K. J. & Ullman, M. T. Past tense morphology in specifically language impaired and normally developing children. Lang. Cogn. Processes 16, 177–217 (2001).

    Article  Google Scholar 

  46. Clahsen, H., Eisenbeiss, S. & Sonnenstuhl, I. Morphological structure and the processing of inflected words. Theor. Linguist. 23, 201–249 (1997).

    Article  Google Scholar 

  47. Penke, M. & Krause, M. German noun plurals: a challenge to the dual-mechanism model. Brain Lang. (in the press).

  48. Bybee, J. L. & Moder, C. L. Morphological classes as natural categories. Language 59, 251–270 (1983).

    Article  Google Scholar 

  49. Fujiwara, M. & Ullman, M. T. in Proc. 12th Annu. CUNY Conf. Hum. Sentence Process. Vol. 12, 88 (CUNY Graduate School and University Center, CUNY, New York, 1999).

    Google Scholar 

  50. Stanners, R. F., Neiser, J. J., Hernon, W. P. & Hall, R. Memory representation for morphologically related words. J. Verb. Learn. Verb. Behav. 18, 399–412 (1979).

    Article  Google Scholar 

  51. Marslen-Wilson, W., Hare, M. & Older, L. in Proc. 15th Annu. Conf. Cogn. Sci. Soc. 1–6 (Hillsdale, New Jersey, 1993).

    Google Scholar 

  52. Sonnenstuhl, I., Eisenbeiss, S. & Clahsen, H. Morphological priming in the German mental lexicon. Cognition 72, 203–236 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Ullman, M. T., Walenski, M., Prado, E., Ozawa, K. & Steinhauer, K. in Proc. 14th Annu. CUNY Conf. Hum. Sentence Process. Vol. 14, 64 (CUNY Graduate School and University Center, Philadelphia, 2001).

    Google Scholar 

  54. Leonard, L. B. Children with Specific Language Impairment (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  55. Gopnik, M. Feature-blind grammar and dysphasia. Nature 344, 715 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Van der Lely, H. K. J. & Stollwerck, L. A grammatical specific language impairment in children: an autosomal dominant inheritance? Brain Lang. 52, 484–504 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Ullman, M. T. & Gopnik, M. in The McGill Working Papers in Linguistics: Linguistic Aspects of Familial Language Impairment Vol. 10 (ed. Matthews, J.) 81–118 (McGill, Montreal, 1994).

    Google Scholar 

  58. Ullman, M. T. & Gopnik, M. Inflectional morphology in a family with inherited specific language impairment. Appl. Psycholinguist. 20, 51–117 (1999).

    Article  Google Scholar 

  59. Vargha-Khadem, F., Watkins, K., Alcock, K., Fletcher, P. & Passingham, R. Praxic and nonverbal cognitive deficits in a large family with genetically transmitted speech and language disorder. Proc. Natl Acad. Sci. USA 92, 930–933 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Vargha-Khadem, F. et al. Neural basis of an inherited speech and language disorder. Proc. Natl Acad. Sci. USA 95, 12695–12700 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Bellugi, U., Bihrle, A., Jernigan, T., Trauner, D. & Doherty, S. Neuropsychological, neurological, and neuroanatomical profile of Williams syndrome. Am. J. Med. Genet. 6 (Suppl.), 115–125 (1990).

    CAS  Google Scholar 

  62. Clahsen, H. & Almazan, M. Syntax and morphology in Williams syndrome. Cognition 68, 167–198 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Bromberg, H. et al. in Proc. 18th Annu. Boston Univ. Conf. Lang. Dev. (Boston, Massachusetts, 1994).

    Google Scholar 

  64. Alexander, M. P. in Behavioral Neurology and Neuropsychology (eds Feinberg, T. E. & Farah, M. J.) 133–150 (McGraw-Hill, New York, 1997).

    Google Scholar 

  65. Damasio, A. R. Aphasia. N. Engl. J. Med. 326, 531–539 (1992).

    Article  CAS  PubMed  Google Scholar 

  66. Tyler, L. K., Ostrin, R. K., Cooke, M. & Moss, H. E. Automatic access of lexical information in Broca's aphasics: against the automaticity hypothesis. Brain Lang. 48, 131–162 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Farah, M. J. & Grossman, M. in Behavioral Neurology and Neuropsychology (eds Feinberg, T. E. & Farah, M. J.) 473–477 (McGraw-Hill, New York, 1997).

    Google Scholar 

  68. Ullman, M. T. et al. Neural correlates of lexicon and grammar: evidence from the production, reading, and judgement of inflection in aphasia. Brain Lang. (in the press).

  69. Marin, O. S. M., Saffran, E. M. & Schwartz, M. F. Dissociations of language in aphasia: implications for normal function. Ann. NY Acad. Sci. 280, 868–884 (1976).

    Article  CAS  PubMed  Google Scholar 

  70. Coslett, H. B. Dissociation between reading of derivational and inflectional suffixes in two phonological dyslexics. Academy of Aphasia (Nashville, 1986).

  71. Badecker, W. & Caramazza, A. The analysis and morphological errors in a case of acquired dyslexia. Brain Lang. 32, 278–305 (1987).

    Article  CAS  PubMed  Google Scholar 

  72. Badecker, W. & Caramazza, A. Morphological composition in the lexical output system. Cogn. Neuropsychol. 8, 335–367 (1991).

    Article  Google Scholar 

  73. Ullman, M. T., Hickok, G. & Pinker, S. Irregular and regular inflectional morphology in an aphasic. Brain Cogn 28, 88–89 (1995).

    Google Scholar 

  74. Coslett, H. B. A selective morphologic impairment in writing: evidence from a phonological dysgraphic. Academy of Aphasia (Montreal, 1988).

  75. Marslen-Wilson, W. D. & Tyler, L. K. Dissociating types of mental computation. Nature 387, 592–594 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Marslen-Wilson, W. & Tyler, L. K. Rules, representations, and the English past tense. Trends Cogn. Sci. 2, 428–435 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Hagiwara, H., Ito, T., Sugioka, Y., Kawamura, M. & Shiota, J.-I. Neurolinguistic evidence for rule-based nominal suffixation. Language 75, 739–763 (1999).

    Article  Google Scholar 

  78. Boller, F. & Duyckaerts, C. in Behavioral Neurology and Neuropsychology (eds Feinberg, T. E. & Farah, M. J.) 521–544 (McGraw-Hill, New York, 1997).

    Google Scholar 

  79. Nebes, R. D. in Behavioral Neurology and Neuropsychiatry (eds Feinberg, T. E. & Farah, M. J.) 545–550 (McGraw-Hill, New York, 1997).

    Google Scholar 

  80. Sagar, H. J., Cohen, N. J., Sullivan, E. V., Corkin, S. & Growdon, J. H. Remote memory function in Alzheimer's and Parkinson's disease. Brain 111, 185–206 (1988).

    Article  PubMed  Google Scholar 

  81. Grossman, M. et al. Language comprehension and regional cerebral defects in frontotemporal degeneration and Alzheimer's disease. Neurology 50, 157–163 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Gabrieli, J. D. E., Corkin, S., Mickel, S. F. & Growdon, J. H. Intact acquisition and long-term retention of mirror-tracing skill in Alzheimer's disease and in global amnesia. Behav. Neurosci. 107, 899–910 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Saint-Cyr, J. A., Taylor, A. E. & Lang, A. E. Procedural learning and neostriatal dysfunction in man. Brain 111, 941–959 (1988).

    Article  PubMed  Google Scholar 

  84. Beatty, W. W. et al. Preserved cognitive skills in dementia of the Alzheimer type. Arch. Neurol. 51, 1040–1046 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Bayles, K. A. Language function in senile dementia. Brain Lang. 16, 265–280 (1982).

    Article  CAS  PubMed  Google Scholar 

  86. Schwartz, M. F., Marin, O. S. M. & Saffran, E. M. Dissociations of language function in dementia: a case study. Brain Lang. 7, 277–306 (1979).

    Article  CAS  PubMed  Google Scholar 

  87. Ullman, M. T. Evidence that lexical memory is part of the temporal lobe declarative memory, and that grammatical rules are processed by the frontal/basal-ganglia procedural system. Brain Lang. (in the press).

  88. Cappa, S. & Ullman, M. T. A neural dissociation in Italian verbal morphology. Abstr. Cogn. Neurosci. Soc. 5, 63 (1998).

    Google Scholar 

  89. Bozeat, S., Lambon Ralph, M. A., Patterson, K., Garrard, P. & Hodges, J. R. Non-verbal impairment in semantic dementia. Neuropsychologia 38, 1207–1214 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Graham, K. S., Patterson, K. & Hodges, J. R. Episodic memory: new insights from the study of semantic dementia. Curr. Opin. Neurobiol. 9, 245–250 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Patterson, K., Lambon Ralph, M. A., Hodges, J. R. & McClelland, J. L. Deficits in irregular past-tense verb morphology associated with degraded semantic knowledge. Neuropsychologia 39, 709–724 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Young, A. B. & Penney, J. B. in Parkinson's Disease and Movement Disorders (eds Jankovic, J. & Tolosa, E.) 1–11 (Williams & Wilkins, Baltimore, Maryland, 1993).

    Google Scholar 

  93. Dubois, B., Boller, F., Pillon, B. & Agid, Y. in Handbook of Neuropsychology Vol. 5 (eds Boller, F. & Grafman, J.) 195–240 (Elsevier, Amsterdam, 1991).

    Google Scholar 

  94. Harrington, D. L., Haaland, K. Y., Yeo, R. A. & Marder, E. Procedural memory in Parkinson's disease: impaired motor but not visuoperceptual learning. J. Clin. Exp. Neuropsychol. 12, 323–339 (1990).

    Article  CAS  PubMed  Google Scholar 

  95. Grossman, M., Carvell, S. & Peltzer, L. The sum and substance of it: the appreciation of mass and count qualifiers in Parkinson's disease. Brain Lang. 44, 351–384 (1993).

    Article  CAS  PubMed  Google Scholar 

  96. Illes, J., Metter, E. J., Hanson, W. R. & Iritani, S. Language production in Parkinson's disease: acoustic and linguistic considerations. Brain Lang. 33, 146–160 (1988).

    Article  CAS  PubMed  Google Scholar 

  97. Lieberman, P. et al. Speech production, syntax comprehension, and cognitive deficits in Parkinson's disease. Brain Lang. 43, 169–189 (1992).

    Article  CAS  PubMed  Google Scholar 

  98. Gabrieli, J. D. E., Cohen, N. J. & Corkin, S. The impaired learning of semantic knowledge following bilateral medial temporal-lobe resection. Brain Cogn 7, 157–177 (1988).

    Article  CAS  PubMed  Google Scholar 

  99. Postle, B. R. & Corkin, S. Impaired word-stem completion priming but intact perceptual identification priming with novel words: evidence from the amnesic patient H. M. Neuropsychologia 15, 421–440 (1998).

    Article  Google Scholar 

  100. Kensinger, E. A., Ullman, M. T. & Corkin, S. Bilateral medial temporal lobe damage does not affect lexical or grammatical processing: evidence from the amnesic patient H. M. Hippocampus 11, 347–360 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Damasio, H., Grabowski, T. J., Tranel, D., Hichwa, R. D. & Damasio, A. R. A neural basis for lexical retrieval. Nature 380, 499–505 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Bookheimer, S. Y., Zeffiro, T. A., Gaillaird, W. & Theodore, W. Regional cerebral blood flow changes during the comprehension of syntactically varying sentences. Soc. Neurosci. Abstr. 19, 843 (1993).

    Google Scholar 

  103. Newman, A. J., Pancheva, R., Ozawa, K., Neville, H. J. & Ullman, M. T. An event-related fMRI study of syntactic and semantic violations. J. Psycholinguist. Res. 30, 339–364 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Kuperberg, G. E. et al. Common and distinct neural substrates for pragmatic, semantic, and syntactic processing of spoken sentences: an fMRI study. J. Cogn. Neurosci. 12, 321–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Stromswold, K., Caplan, D., Alpert, N. & Rauch, S. Localization of syntactic comprehension by positron emission tomography. Brain Lang. 52, 452–473 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Ni, W. et al. An event-related neuroimaging study distinguishing form and content in sentence processing. J. Cogn. Neurosci. 12, 120–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Embick, D., Marantz, A., Miyashita, Y., O' Neil, W. & Sakai, K. L. A syntactic specialization for Broca's area. Proc. Natl Acad. Sci. USA 97, 6150–6154 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Indefrey, P. et al. in Proc. 12th Annu. CUNY Conf. Hum. Sentence Process. Vol. 12, 93 (CUNY Graduate School and University Center, CUNY, New York, 1999).

    Google Scholar 

  109. Moro, A. et al. Syntax and the brain: disentangling grammar by selective anomalies. Neuroimage 13, 110–118 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Jaeger, J. J. et al. A positron emission tomographic study of regular and irregular verb morphology in English. Language 72, 451–497 (1996).

    Article  Google Scholar 

  111. Ullman, M. T., Bergida, R. & O'Craven, K. Distinct fMRI activation patterns for regular and irregular past tense. Neuroimage 5, S549 (1997).

    Google Scholar 

  112. Rhee, J. et al. Neural substrates of English past tense generation. Abstr. Cogn. Neurosci. Soc. 8, 131 (2001).

    Google Scholar 

  113. Indefrey, P. et al. A PET study of cerebral activation patterns induced by verb inflection. Neuroimage 5, S548 (1997).

  114. Laine, M., Rinne, J. O., Krause, B. J., Teras, M. & Sipila, H. Left hemisphere activation during processing of morphologically complex word forms in adults. Neurosci. Lett. 271, 85–88 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Barrett, S. E. & Rugg, M. D. Event-related potentials and the semantic matching of pictures. Brain Cogn 14, 201–212 (1990).

    Article  CAS  PubMed  Google Scholar 

  116. Nobre, A. C., Allison, T. & McCarthy, G. Word recognition in the human inferior temporal lobe. Nature 372, 260–263 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Segalowitz, S. J. & Chevalier, H. in Handbook of Neurolinguistics (eds Stemmer, B. & Whitaker, H. A.) 95–109 (Academic, San Diego, California, 1998).

    Book  Google Scholar 

  118. Neville, H., Nicol, J. L., Barss, A., Forster, K. I. & Garrett, M. F. Syntactically based sentence processing classes: evidence from event-related brain potentials. J. Cogn. Neurosci. 3, 151–165 (1991).

    Article  CAS  PubMed  Google Scholar 

  119. Friederici, A. D., Pfeifer, E. & Hahne, A. Event-related brain potentials during natural speech processing: effects of semantic, morphological and syntactic violations. Brain Res. Cogn. Brain Res. 1, 183–192 (1993).

    Article  CAS  PubMed  Google Scholar 

  120. Friederici, A. D., Hahne, A. & Mecklinger, A. The temporal structure of syntactic parsing: early and late effects elicited by syntactic anomalies. J. Exp. Psychol. Learn. Mem. Cogn 22, 1219–1248 (1996).

    Article  CAS  PubMed  Google Scholar 

  121. Friederici, A. D., Hahne, A. & Von Cramon, D. Y. First-pass versus second-pass parsing processes in a Wernicke's and a Broca's aphasic: electrophysiological evidence for a double dissociation. Brain Lang. 62, 311–341 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Friederici, A. D. & Frisch, S. Verb-argument structure processing: the role of verb-specific and argument-specific information. J. Mem. Lang. 43, 476–507 (2000).

    Article  Google Scholar 

  123. Osterhout, L. & Holcomb, P. J. Event-related brain potentials elicited by syntactic anomaly. J. Mem. Lang. 31, 785–806 (1992).

    Article  Google Scholar 

  124. Weyerts, H., Penke, M., Dohrn, U., Clahsen, H. & Münte, T. F. Brain potentials indicate differences between regular and irregular German plurals. Neuroreport 8, 957–962 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Penke, M. et al. How the brain processes complex words: an event-related potential study of German verb inflections. Brain Res. Cogn. Brain Res. 6, 37–52 (1997).

    Article  CAS  PubMed  Google Scholar 

  126. Gross, M., Say, T., Kleingers, M., Münte, T. F. & Clahsen, H. Human brain potentials to violations in morphologically complex Italian words. Neurosci. Lett. 241, 83–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Münte, T. F., Say, T., Clahsen, H., Schiltz, K. & Kutas, M. Decomposition of morphologically complex words in English: evidence from event-related brain potentials. Brain Res. Cogn. Brain Res. 7, 241–253 (1999).

    Article  PubMed  Google Scholar 

  128. Newman, A., Izvorski, R., Davis, L., Neville, H. & Ullman, M. T. Distinct electrophysiological patterns in the processing of regular and irregular verbs. Abstr. Cogn. Neurosci. Soc. 6, 47 (1999).

    Google Scholar 

  129. Ullman, M. T., Newman, A., Izvorski, R. & Neville, H. in Proc. 13th Annu. CUNY Conf. Hum. Sentence Process. Vol. 13, 87 (CUNY Graduate School and University Center, La Jolla, California, 2000).

    Google Scholar 

  130. Lavric, A., Pizzagalli, D., Forstmeier, S. & Rippon, G. Mapping dissociations in verb morphology. Trends Cogn. Sci. 5, 301–308 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Rhee, J., Pinker, S. & Ullman, M. T. A magnetoencephalographic study of English past tense production. Abstr. Cogn. Neurosci. Soc. 6, 47 (1999).

    Google Scholar 

  132. Curran, H. V. in The New Cognitive Neurosciences (ed. Gazzaniga, M. S.) 797–804 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  133. Ullman, M. T. Neural plasticity and morphological processing in agrammatic aphasia: implications for recovery. Abstr. Cogn. Neurosci. Soc. 7, 53 (2000).

    Google Scholar 

  134. Dell, G. S. A spreading-activation theory of retrieval in sentence production. Psychol. Rev. 93, 283–321 (1986).

    Article  CAS  PubMed  Google Scholar 

  135. Halle, M. Prolegomena to a theory of word formation. Linguistic Inq. 4, 3–16 (1973).

    Google Scholar 

  136. Anderson, S. R. A-morphous morphology (Cambridge Univ. Press, New York, 1992).

    Book  Google Scholar 

  137. Jackendoff, R. S. Morphological and semantic regularities in the lexicon. Language 51, 639–671 (1975).

    Article  Google Scholar 

  138. Aronoff, M. Word Formation in Generative Grammar (MIT Press, Cambridge, Massachusetts, 1976).

    Google Scholar 

  139. Ling, C. X. & Marinov, M. A symbolic model of the nonconscious acquisition of information. Cogn. Sci. 18, 595–621 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

Support was provided by a McDonnell-Pew grant in Cognitive Neuroscience, and by grants from the National Institutes of Health, the National Science Foundation and the Department of Defence.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

MIT Encyclopedia of Cognitive Sciences

magnetic resonance imaging

positron emission tomography

OMIM

Alzheimer's disease

Huntington's disease

Parkinson's disease

FURTHER INFORMATION

MIT Encyclopedia of Cognitive Sciences

grammar, neural basis of

language, neural basis of

lexicon, neural basis of

linguistics and language

psycholinguistics

Glossary

INFLECTIONAL MORPHOLOGY

The modification of a word to fit its grammatical role. For example, 'sang' and 'walked' are inflected in the past tense.

DERIVATIONAL MORPHOLOGY

The creation of new words. For example, the nouns 'solemnity' and 'toughness' are derived from the adjectives solemn and tough, respectively.

DOUBLE DISSOCIATION

A double dissociation is observed when two different tasks lead to complementary patterns in behaviour or brain activation. Task X is normal in patient A but not patient B, whereas task Y is normal in patient B but not in A. Similarly, in scanning healthy subjects, task X leads to activation in one brain area but not another, whereas task Y shows the opposite pattern.

FREQUENCY EFFECTS

Words stored in memory are remembered better and faster if they have been more frequently encountered.

PRIMING

A word is recognized faster if it has been primed by an earlier presentation of the same word.

WILLIAMS' SYNDROME

A hereditary developmental disorder characterized by cognitive impairment (usually mild mental retardation), distinctive facial features and cardiovascular disease.

APHASIA

Language impairments acquired as a result of stroke or other brain injury.

AGRAMMATISM

Syntactic and morphological impairments in production and comprehension, including those in the use of free and bound grammatical morphemes (auxiliaries, determiners, and affixes such as '-ed').

IDEOMOTOR APRAXIA

An impairment in the expression of motor skills. Patients with ideomotor apraxia have problems with imitation, pantomime and tool use.

ANTEROGRADE AMNESIA

The inability to store new information in long-term memory.

RETROGRADE AMNESIA

Loss of or inability to recall information that was previously stored in long-term memory.

H.M.

Arguably the best-studied patient in the literature on memory, H.M. became amnesic after the bilateral resection of large parts of the temporal lobe in an attempt to treat epilepsy episodes. The analysis of H.M.'s amnesia provided a clear dissociation between declarative and procedural memory.

MAGNETOENCEPHALOGRAPHY

A non-invasive technique that allows the detection of the changing magnetic fields that are associated with brain activity. As the magnetic fields of the brain are very weak, extremely sensitive magnetic detectors known as superconducting quantum interference devices, which work at very low, superconducting temperatures (−269 °C), are used to pick up the signal.

DIPOLE MODELLING

A method to determine the location of the sources that underlie the responses measured in a magnetoencephalographic experiment. It provides an estimate of the location, orientation and strength of the source as a function of time after the stimulus was presented.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullman, M. A neurocognitive perspective on language: The declarative/procedural model. Nat Rev Neurosci 2, 717–726 (2001). https://doi.org/10.1038/35094573

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35094573

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing