Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prokaryotic origin of the actin cytoskeleton

Abstract

It was thought until recently that bacteria lack the actin or tubulin filament networks that organize eukaryotic cytoplasm. However, we show here that the bacterial MreB protein assembles into filaments with a subunit repeat similar to that of F-actin—the physiological polymer of eukaryotic actin. By elucidating the MreB crystal structure we demonstrate that MreB and actin are very similar in three dimensions. Moreover, the crystals contain protofilaments, allowing visualization of actin-like strands at atomic resolution. The structure of the MreB protofilament is in remarkably good agreement with the model for F-actin, showing that the proteins assemble in identical orientations. The actin-like properties of MreB explain the finding that MreB forms large fibrous spirals under the cell membrane of rod-shaped cells, where they are involved in cell-shape determination. Thus, prokaryotes are now known to possess homologues both of tubulin, namely FtsZ, and of actin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MreB polymerization assays.
Figure 2: Electron micrographs of negatively stained MreB filaments.
Figure 3: Ribbon representation of the crystal structure of MreB complexed with AMPPNP and magnesium.
Figure 4: Sequence alignment of MreB1 from T. maritima to B. subtilis MreB (SWISSPROT: MREB_BACSU) and structure-based sequence alignment to yeast actin (SWISSPROT: ACT_YEAST; PDB, 1YAG) using DALI21.
Figure 5: Both crystal forms (HRES, NATI) contain one-dimensional protofilaments.
Figure 6: Close-up of the protofilament protein interface.

Similar content being viewed by others

References

  1. Schmidt, A. & Hall, M. N. Signaling to the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 14, 305–338 (1998).

    Article  CAS  Google Scholar 

  2. Straub, F. B. Actin. Stud. Inst. Med. Chem. Univ. Szeged 2, 3–15 (1942).

    CAS  Google Scholar 

  3. Holmes, K. C., Popp, D., Gebhard, W. & Kabsch, W. Atomic model of the actin filament. Nature 347, 44–49 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Egelman, E. H., Francis, N. & DeRosier, D. J. F-actin is a helix with a random variable twist. Nature 298, 131–135 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Steinmetz, M. O. et al. An atomic model of crystalline actin tubes: combining electron microscopy with X-ray crystallography. J. Mol. Biol. 278, 703–711 (1998).

    Article  CAS  Google Scholar 

  6. Aebi, U., Fowler, W. E., Isenberg, G., Pollard, T. D. & Smith, P. R. Crystalline actin sheets—their structure and polymorphism. J. Cell Biol. 91, 340–351 (1981).

    Article  CAS  Google Scholar 

  7. Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. & Holmes, K. C. Atomic-structure of the actin–DNase-I complex. Nature 347, 37–44 (1990).

    Article  ADS  CAS  Google Scholar 

  8. McLaughlin, P. J., Gooch, J. T., Mannherz, H. G. & Weeds, A. G. Structure of gelsolin segment-1-actin complex and the mechanism of filament severing. Nature 364, 685–692 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Schutt, C. E., Myslik, J. C., Rozycki, M. D., Goonesekere, N. C. W. & Lindberg, U. The structure of crystalline profilin β-actin. Nature 365, 810–816 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Chik, J. K., Lindberg, U. & Schutt, C. E. The structure of an open state of β-actin at 2.65 angstrom resolution. J. Mol. Biol. 263, 607–623 (1996).

    Article  CAS  Google Scholar 

  11. Bork, P., Sander, C. & Valencia, A. An ATPase domain common to prokaryotic cell-cycle proteins, sugar kinases, actin, and Hsp70 heat-shock proteins. Proc. Natl Acad. Sci. USA 89, 7290–7294 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Kabsch, W. & Holmes, K. C. Protein motifs 2. The actin fold. FASEB J. 9, 167–174 (1995).

    Article  CAS  Google Scholar 

  13. Flaherty, K. M., Delucaflaherty, C. & McKay, D. B. Three-dimensional structure of the ATPase fragment of a 70kDa heat-shock cognate protein. Nature 346, 623–628 (1990).

    Article  ADS  CAS  Google Scholar 

  14. van den Ent, F. & Löwe, J. Crystal structure of the cell division protein FtsA from Thermotoga maritima. EMBO J. 19, 5300–5307 (2000).

    Article  CAS  Google Scholar 

  15. Hurley, J. H. et al. Structure of the regulatory complex of Escherichi coli Iii(Glc) with glycerol kinase. Science 259, 673–677 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Anderson, C. M., McDonald, R. C. & Steitz, T. A. Sequencing a protein by X-ray crystallography. Interpretation of yeast hexokinase B at 2.5 Å resolution by model building. J. Mol. Biol. 123, 1–13 (1978).

    Article  CAS  Google Scholar 

  17. Wachi, M. et al. Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli. J. Bacteriol. 169, 4935–4940 (1987).

    Article  CAS  Google Scholar 

  18. Doi, M. et al. Determinations of the DNA sequence of the mreB gene and of the gene products of the mre region that function in formation of the rod shape of Escherichia coli cells. J. Bacteriol. 170, 4619–4624 (1988).

    Article  CAS  Google Scholar 

  19. Levin, P. A., Margolis, P. S., Setlow, P., Losick, R. & Sun, D. X. Identification of Bacillus subtilis genes for septum placement and shape determination. J. Bacteriol. 174, 6717–6728 (1992).

    Article  CAS  Google Scholar 

  20. Jones, L. J. F., Carballido-Lopez, R. & Errington, J. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104, 913–922 (2001).

    Article  CAS  Google Scholar 

  21. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  22. Flaherty, K. M., McKay, D. B., Kabsch, W. & Holmes, K. C. Similarity of the 3-dimensional structures of actin and the ATPase fragment of a 70-kDa heat-shock cognate protein. Proc. Natl Acad. Sci. USA 88, 5041–5045 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Lorenz, M., Popp, D. & Holmes, K. C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J. Mol. Biol. 234, 826–836 (1993).

    Article  CAS  Google Scholar 

  24. Tirion, M. M., Benavraham, D., Lorenz, M. & Holmes, K. C. Normal-modes as refinement parameters for the F-actin model. Biophys. J. 68, 5–12 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Page, R., Lindberg, U. & Schutt, C. E. Domain motions in actin. J. Mol. Biol. 280, 463–474 (1998).

    Article  CAS  Google Scholar 

  26. Nogales, E., Downing, K. H., Amos, L. A. & Löwe, J. Tubulin and FtsZ form a distinct family of GTPases. Nature Struct. Biol. 5, 451–458 (1998).

    Article  CAS  Google Scholar 

  27. Miroux, B. & Walker, J. E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298 (1996).

    Article  CAS  Google Scholar 

  28. Crowther, R. A., Henderson, R. & Smith, J. M. MRC image processing programs. J. Struct. Biol. 116, 9–16 (1996).

    Article  CAS  Google Scholar 

  29. van den Ent, F., Lockhart, A., Kendrick-Jones, J. & Löwe, J. Crystal structure of the N-terminal domain of MukB: a protein involved in chromosome partitioning. Struct. Fold. Des. 7, 1181–1187 (1999).

    Article  CAS  Google Scholar 

  30. Leslie, A. G. W. Recent Changes to the MOSFLM Package for Processing Film and Image Plate Data (SERC Laboratory, Daresbury, UK, 1991).

    Google Scholar 

  31. Collaborative Computing Project No. 4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  32. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  33. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  34. Turk, D. Weiterentwicklung eines Programms für Molekülgrafik und Elektrondichte-Manipulation und seine Anwendung auf verschiedene Protein-Strukturaufklärungen. Thesis, Technische Univ. München (1992).

    Google Scholar 

  35. Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  36. Engh, R. A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr. A 47, 392–400 (1991).

    Article  Google Scholar 

  37. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. Procheck—a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  38. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  39. Merritt, E. A. & Bacon, D. J. Raster 3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  40. Barton, G. J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 6, 37–40 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Munro for critically reading the manuscript and the staff at ID14-4 of ESRF (Grenoble, France) for assistance with MAD data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusinita van den Ent.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Ent, F., Amos, L. & Löwe, J. Prokaryotic origin of the actin cytoskeleton. Nature 413, 39–44 (2001). https://doi.org/10.1038/35092500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35092500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing