Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

http://C.Elegans: Mining the functional genomic landscape

Key Points

  • The goals of functional genomics are to speed up genetic analysis and ultimately to facilitate analysis of complex biological phenomena that might not be amenable to classical studies.

  • The C. elegans genome contains 19,717 predicted genes, encoded by 97 Mb and only a fraction of these genes have been studied using classical approaches.

  • Functional genomic approaches aim to provide insights into the function of new worm genes and hopefully will pave the way for functional genomic analysis of the human genome.

  • RNA interference (RNAi) and PCR-based knockouts are the first port of call in gene function studies. All predicted genes are being knocked down in RNAi screens and the results are made available in online searchable databases. The Knockout Consortium plans to knock out all predicted genes and make the knockout strains available to the C. elegans research community.

  • Publically available microarray data is a valuable source of information on gene expression. This growing data set will ultimately be stored in an online database — a part of the Stanford Microarray Database.

  • Large-scale proteomics projects that use modified yeast two-hybrid approaches have just begun and, once validated by additional in vivo data, such as RNAi, or by information from other species, will provide useful information on protein–protein interactions.

Abstract

Caenorhabditis elegans is a powerful animal model for the study of functional genomics. The completed and well-annotated DNA sequence is available and a systematic study of gene function by RNA-interference-mediated knockdown of every gene is in progress. Full-genome DNA microarrays and DNA chips can be used to determine expression changes at different stages of development and in different mutant backgrounds, and a protein-interaction map based on the yeast two-hybrid approach is in progress. These high-capacity approaches to studying gene function will provide new insights into invertebrate and vertebrate biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Annotation of the genome sequence.
Figure 2: RNAi screens in Caenorhabditis elegans.
Figure 3: Gene expression profiles from DNA microarray experiments.

Similar content being viewed by others

References

  1. The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

  2. Myers, E. W. et al. A whole-genome assembly of Drosophila. Science 287, 2196–2204 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ankeny, R. A. The natural history of Caenorhabditis elegans research. Nature Rev. Genet. 2, 474–479 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Costanzo, M. C. et al. The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res. 28, 73–76 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Piano, F., Schetterdagger, A. J., Mangone, M., Stein, L. & Kemphues, K. J. RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Curr. Biol. 10, 1619–1622 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Maeda, I., Kohara, Y., Yamamoto, M. & Sugimoto, A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr. Biol. 11, 171–176 (2001).References 8–11 and 31 present data from large RNAi screens. Together, these papers assay more than one-third of the genes for RNAi phenotypes.

    Article  CAS  PubMed  Google Scholar 

  12. Reinke, V. et al. A global profile of germline gene expression in C. elegans. Mol. Cell 6, 605–616 (2000).This paper identified 1,416 germ-line-expressed genes, which were further split into sperm enriched, oocyte enriched and germ-line intrinsic (those expressed in both the sperm and the oocyte). The paper also showed a deficit of sperm-enriched genes on the X chromosome, indicating that the X chromosome might be inactive in the male germ line.

    Article  CAS  PubMed  Google Scholar 

  13. Hill, A. A., Hunter, C. P., Tsung, B. T., Tucker-Kellogg, G. & Brown, E. L. Genomic analysis of gene expression in C. elegans. Science 290, 809–812 (2000).Affymetrix DNA chips were used to profile gene expression changes during development and ageing. The paper showed that genes conserved in yeast show less developmental regulation than non-conserved genes, possibly because they perform core cell biological functions and are ubiquitously expressed.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, M. et al. Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 98, 218–223 (2001).In this study, gene expression changes during development and in the two sexes were analysed using DNA microarrays.

    Article  CAS  PubMed  Google Scholar 

  15. Walhout, A. J., Boulton, S. J. & Vidal, M. Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm. Yeast 17, 88–94 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977).

    Article  CAS  PubMed  Google Scholar 

  18. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the ventral nerve cord of Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 275, 327–348 (1976).

    Article  CAS  Google Scholar 

  19. Stein, L., Sternberg, P., Durbin, R., Thierry-Mieg, J. & Spieth, J. WormBase: network access to the genome and biology of Caenorhabditis elegans. Nucleic Acids Res. 29, 82–86 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kent, W. J. & Zahler, A. M. The intronerator: exploring introns and alternative splicing in Caenorhabditis elegans. Nucleic Acids Res. 28, 91–93 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Montgomery, M. K., Xu, S. & Fire, A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 95, 15502–15507 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hammond, S. M. et al. Post-transcriptional gene silencing by double-stranded RNA. Nature Rev. Genet. 2, 110–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Tabara, H., Grishok, A. & Mello, C. C. RNAi in C. elegans: soaking in the genome sequence. Science 282, 430–431 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998).

  27. Timmons, L., Court, D. L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G. & Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2, RESEARCH0002 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tavernarakis, N. et al. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genet. 24, 180–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Hoier, E. F. The Caenorhabditis elegans APC-related gene apr-1 is required for epithelial cell migration and Hox gene expression. Genes Dev. 14, 874–886 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zipperlen, P. et al. Roles for 147 embryonic lethal genes on C. elegans chromosome I identified by RNA interference and video-microscopy. EMBO J. 20, 3984–3992 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, S. K. Functional genomics: the worm scores a knockout. Curr. Biol. 11, R85–R87 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Jansen, G., Hazendonk, E., Thijssen, K. L. & Plasterk, R. H. Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nature Genet. 17, 119–121 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genet. 14, 457–460 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Shalon, D., Smith, S. J. & Brown, P. O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 6, 639–645 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. DeRisi, J. L., Iyer, V. R. & Brown, P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Lockhart, D. J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996).

    Article  CAS  Google Scholar 

  39. Wodicka, L., Dong, H., Mittmann, M., Ho, M. H. & Lockhart, D. J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol. 15, 1359–1367 (1997).

    Article  CAS  Google Scholar 

  40. Zarkower, D. & Hodgkin, J. Molecular analysis of the C. elegans sex-determining gene tra-1: a gene encoding two zinc finger proteins. Cell 70, 237–249 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Hodgkin, J. A genetic analysis of the sex-determining gene, tra-1, in the nematode Caenorhabditis elegans. Genes Dev. 1, 731–745 (1987).

    Article  CAS  PubMed  Google Scholar 

  42. Sherlock, G. et al. The Stanford Microarray Database. Nucleic Acids Res. 29, 152–155 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hope, I. A. 'Promoter trapping' in Caenorhabditis elegans. Development 113, 399–408 (1991).

    CAS  PubMed  Google Scholar 

  44. Young, J. M. & Hope, I. A. Molecular markers of differentiation in Caenorhabditis elegans obtained by promoter trapping. Dev. Dyn. 196, 124–132 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Lynch, A. S., Briggs, D. & Hope, I. A. Developmental expression pattern screen for genes predicted in the C. elegans genome sequencing project. Nature Genet. 11, 309–313 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Hope, I. A. et al. Promoter trapping identifies real genes in C. elegans. Mol. Gen. Genet. 260, 300–308 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Tabara, H., Motohashi, T. & Kohara, Y. A multi-well version of in situ hybridization on whole mount embryos of Caenorhabditis elegans. Nucleic Acids Res. 24, 2119–2124 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Walhout, A. J. et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116–122 (2000).A pilot study showing that a semi-automated yeast two-hybrid approach could be used to identify protein interactions for large numbers of C. elegans proteins in parallel. The study focused on 27 proteins known to be involved in vulval differentiation, including several pairs of proteins that are known to interact.

    Article  CAS  PubMed  Google Scholar 

  49. Kornfeld, K. Vulval development in Caenorhabditis elegans. Trends Genet. 13, 55–61 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Ross, D. T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genet. 24, 227–235 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Perou, C. M. et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl Acad. Sci. USA 96, 9212–9217 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Tye, B. K. MCM proteins in DNA replication. Annu. Rev. Biochem. 68, 649–686 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Chervitz, S. A. et al. Comparison of the complete protein sets of worm and yeast: orthology and divergence. Science 282, 2022–2028 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

WNT

mcm-6

mcm-5

mcm-2

mcm-3

mcm-4

mcm-7

FURTHER INFORMATION

WormPD

WormBase

Intronerator

C.elegansWWW.server

Julie Ahringer

Tony Hyman

UK HGMP Resource Centre

Ken Kemphues

Asako Sugimoto

Genome-wide RNA-interference-based screen for genes important in cell division

Robert Barstead

Donald Moerman

Shohei Mitani

Andrew Hill

Craig Hunter

Affymetrix

Kim lab C. elegans microarray page

Research Genetics

Stanford Microarray Database

The Sanger Centre

Marc Vidal

Knockout Consortium

Glossary

METAZOAN

A multicellular organism.

RAS

A family of proteins that function as signal transducers in the cytoplasm of mammalian and other eukaryotic cells. Constitutively active Ras has been implicated in carcinogenesis.

YEAST TWO-HYBRID APPROACH

A technique used to test if two proteins physically interact with each other. One protein is fused to the GAL4 activation domain and the other to the GAL4 DNA-binding domain, and both fusion proteins are introduced into yeast. Expression of a GAL4-regulated reporter gene indicates that the two proteins physically interact.

DNA MICROARRAY

Array of PCR products (corresponding to either genomic or cDNA sequence) that is deposited onto solid glass slides.

SATURATION GENETIC SCREEN

A genetic screen that is designed to recover at least one mutation in every gene.

DNA CHIP

An array of short DNA oligonucleotides (usually 20 nucleotides long) synthesized onto a solid support by photolithography, each of which corresponds to a single gene. In this method, specific areas of a DNA chip are activated by light, allowing these regions to react with a base on the oligonucleotides, so binding them to the chip.

TRA-1

A zinc-finger transcription factor that is the final target of the sex-determination pathway in Caenorhabditis elegans; its expression leads to hermaphrodite development, whereas lack of its expression leads to male development.

DAUER

Juvenile nematode in which development arrests during unsuitable conditions and then resumes when conditions improve.

RT-PCR

A type of PCR in which RNA is converted into double-stranded DNA, which is then amplified.

SHUTTLE VECTOR

A plasmid into which DNA fragments are cloned and from which they can be re-cloned into various other vectors, such as green fluorescent protein, lacZ or heat-shock vectors.

BAIT

In a yeast two-hybrid approach, this is the protein that is fused to the GAL4 DNA-binding domain.

FORWARD GENETIC SCREEN

A genetic screen in which mutants are isolated on the basis of their phenotype and the responsible gene is identified by positional cloning or by a candidate-gene approach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S. http://C.Elegans: Mining the functional genomic landscape. Nat Rev Genet 2, 681–689 (2001). https://doi.org/10.1038/35088523

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35088523

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing