Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Programmed cell death and apoptosis: origins of the theory

Abstract

Interest in the study of apoptosis grew with the recognition that it is a highly regulated process. Such a change in attitude allowed the intellectual and technical breakthroughs that led to the explosive development of this subject.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Older images of cell death.
Figure 2: Apoptotic and other types of cell death in a metamorphosing weevil.
Figure 3: Scientists active since 1945 in the field of cell death.

References

  1. Clarke, P. G. H. & Clarke, S. Nineteenth century research on naturally occurring cell death and related phenomena. Anat. Embryol. 193, 81–99 (1996).

    Article  CAS  Google Scholar 

  2. Häcker, G. & Vaux, D. L. A chronology of cell death. Apoptosis 2, 247–256 (1997).

    Article  Google Scholar 

  3. Flemming, W. Über die bildung von richtungsfiguren in säugethiereiern beim untergang graaf'scher follikel. Arch. Anat. Physiol. 221–244 (1885).

  4. Paweletz, N. Walther Flemming: pioneer of mitosis research. Nature Rev. Mol. Cell Biol. 2, 72–75 (2001).

    Article  CAS  Google Scholar 

  5. Murray, F. V. & Tiegs, O. W. The metamorphosis of Calandra oryzae. Q. J. Microsc. Sci. 77, 405–495 (1935).

    Google Scholar 

  6. Feytaud, J. Contribution á l'étude dur termite lucifuge (anatomie, fondation de colonies nouvelles). Arch. Anat. Microsc. 13, 481–607 (1912).

    Google Scholar 

  7. Terre, L. Contribution á l'étude de l'histolyse et de l'histogénèse du tissu musculaire chez l'abeille. C.R. Soc. Biol. (IIe Série) 51, 896–898 (1889).

    Google Scholar 

  8. Hulst, F. A. The histolysis of the musculature of Culex pungens during metamorphosis. Biol. Bull. 11, 277–304 (1906).

    Article  Google Scholar 

  9. Janet, C. Anatomie du Corselet et Histolyse des Muscles Vibrateurs après le Vol Nuptial, Chez la Reine de la Fourmi (Lasius Niger) (DuCourtieux et Gout, Limoges, 1907).

  10. Pérez, C. Recherches histologiques sur la métamorphose des muscides (Calliphora erythrocephala Mg). Arch. Zool. Expér. Gén. 5e. Série 4, 1–274 (1910).

    Google Scholar 

  11. Glücksmann, A. Cell deaths in normal vertebrate ontogeny. Biol. Rev. Camb. Phil. Soc. 26, 59–86 (1951).

    Article  Google Scholar 

  12. Glücksmann, A. Cell death in normal development. Arch. Biol. (Liege) 76, 419–437 (1965).

    Google Scholar 

  13. De Duve, C. The lysosomes, a new group of cytoplasmic granules. J. Physiol. (Paris) 49, 113–115 (1957).

    CAS  Google Scholar 

  14. Saunders, J. W. Jr Death in embryonic systems. Science 154, 604–612 (1966).

    Article  Google Scholar 

  15. Lockshin, R. A. & Williams, C. M. Programmed cell death. II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J. Insect Physiol. 10, 643–649 (1964).

    Article  CAS  Google Scholar 

  16. Fell, H. B. & Canti, R. G. Experiments on the development in vitro of the avian knee-joint. Proc. R. Soc. Lond. B 116, 316–351 (1934).

    Article  Google Scholar 

  17. Hamburger, V. & Levi-Montalcini, R. Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J. Exp. Zool. 111, 457–502 (1949).

    Article  CAS  Google Scholar 

  18. Lockshin, R. A. & Beaulaton, J. Cytological studies of dying muscle fibers of known physiological parameters. Tissue Cell 11, 803–819 (1979).

    Article  CAS  Google Scholar 

  19. Weber, R. in Biology and Pathology Vol. I (eds Dingle, J. T. & Fell, H. B.) 437–461 (Elsevier North Holland, Amsterdam, 1969).

    Google Scholar 

  20. Helminen, H. J., Ericsson, J. L. & Orrenius, S. Studies on mammary gland involution. IV. Histochemical and biochemical observations on alterations in lysosomes and lysosomal enzymes. J. Ultrastruct. Res. 25, 240–252 (1968).

    Article  CAS  Google Scholar 

  21. Lockshin, R. A. & Beaulaton, J. Cell death: questions for histochemists concerning the causes of the various cytological changes. Histochem. J. 13, 659–666 (1981).

    Article  CAS  Google Scholar 

  22. Trump, B. F. & Berezesky, I. K. Calcium-mediated cell injury and cell death. FASEB J. 9, 219–228 (1995).

    Article  CAS  Google Scholar 

  23. Kerr, J. F. R., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  Google Scholar 

  24. Arends, M. J., Morris, R. G. & Wyllie, A. H. Apoptosis: The role of the endonuclease. Am. J. Pathol. 136, 593–608 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zakeri, Z. F., Quaglino, D., Latham, T. & Lockshin, R. A. Delayed internucleosomal DNA fragmentation in programmed cell death. FASEB J. 7, 470–478 (1993).

    Article  CAS  Google Scholar 

  26. Tata, J. R. Requirement for RNA and protein synthesis for induced regression of tadpole tail in organ culture. Dev. Biol. 13, 77–94 (1966).

    Article  CAS  Google Scholar 

  27. Lockshin, R. A. Programmed cell death. Activation of lysis by a mechanism involving the synthesis of protein. J. Insect Physiol. 15, 1505–1516 (1969).

    Article  CAS  Google Scholar 

  28. Makman, M. H., Dvorkin, B. & White, A. Evidence for induction by cortisol in vitro of a protein inhibitor of transport and phosphorylation processes in rat thymocytes. Proc. Natl Acad. Sci. USA 68, 1269–1273 (1971).

    Article  CAS  Google Scholar 

  29. Hinchliffe, J. R. in Cell Death in Biology and Pathology (eds Bowen, I. D. & Lockshin, R. A.) 35–78 (Chapman and Hall, London, 1981).

    Book  Google Scholar 

  30. Sulston, J. & Horvitz, H. R. Postembryonic cell lineages of the nematode Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977).

    Article  CAS  Google Scholar 

  31. Horvitz, H. R., Sternberg, P. W., Greenwald, I. S., Fixsen, W. & Ellis, H. M. Mutations that affect neural cell lineages and cell fates during the development of the nematode Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol. 48, part 2, 453–463 (1983).

    Article  Google Scholar 

  32. Vaux, D. L., Cory, S. & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988).

    Article  CAS  Google Scholar 

  33. Yonish-Rouach, E. et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352, 345–347 (1991).

    Article  CAS  Google Scholar 

  34. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  CAS  Google Scholar 

  35. Buttyan, R., Zakeri, Z., Lockshin, R. A. & Wolgemuth, D. Cascade induction of c-fos, c-myc, and heat shock 70 k transcripts during regression of the rat ventral prostate gland. Mol. Endocrinol. 2, 650–657 (1988).

    Article  CAS  Google Scholar 

  36. Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).

    Article  CAS  Google Scholar 

  37. Umansky, S. R. The genetic program of cell death. Hypothesis and some applications: transformation, carcinogenesis, ageing. J. Theor. Biol. 97, 591–602 (1982).

    Article  CAS  Google Scholar 

  38. Wyllie, A. H. Apoptosis (The 1992 Frank Rose Memorial Lecture). Br. J. Cancer 67, 205–208 (1993).

    Article  CAS  Google Scholar 

  39. Trauth, B. C. et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245, 301–305 (1989).

    Article  CAS  Google Scholar 

  40. Yonehara, S., Ishii, A. & Yonehara, M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169, 1747–1756 (1989).

    Article  CAS  Google Scholar 

  41. Ameisen, J. C. & Capron, A. Cell dysfunction and depletion in AIDS: The programmed cell death hypothesis. Immunol. Today 12, 102–105 (1991).

    Article  CAS  Google Scholar 

  42. Raff, M. C. Social controls on cell survival and cell death. Nature 356, 397–400 (1992).

    Article  CAS  Google Scholar 

  43. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75, 641–652 (1993).

    Article  CAS  Google Scholar 

  44. Vaux, D., Weissman, I. L. & Kim, S. K. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258, 1955–1957 (1992).

    Article  CAS  Google Scholar 

  45. Nicholson, D. W. From bench to clinic with apoptosis-based therapeutic agents. Nature 407, 810–816 (2000).

    Article  CAS  Google Scholar 

  46. Levi-Montalcini, R. The nerve growth factor 35 years later. Science 237, 1154–1162 (1987).

    Article  CAS  Google Scholar 

  47. Cryns, V. L. & Yuan, J. Y. in When Cells Die: A Comprehensive Evaluation of Apoptosis and Programmed Cell Death (eds Lockshin, R. A., Zakeri, Z. & Tilly, J. L.) 117–210 (Wiley–Liss, New York, 1998).

    Google Scholar 

  48. Hengartner, M. O. & Horvitz, H. R. Programmed cell death in Caenorhabditis elegans. Curr. Opin. Genet. Dev. 4, 581–586 (1994).

    Article  CAS  Google Scholar 

  49. Hengartner, M. O. The biochemistry of apoptosis. Nature 407, 770–776 (2000).

    Article  CAS  Google Scholar 

  50. Meier, P., Finch, A. & Evan, G. Apoptosis in development. Nature 407, 796–801 (2000).

    Article  CAS  Google Scholar 

  51. Noetzel, W. Die Rückbildung der Gewebe im Schwanz der Froschlarve. Arch. Mikrosk. Anat. 45, 475–512 (1895).

    Article  Google Scholar 

  52. Collin, R. Recherches cytologiques dur le développement de la cellule nerveuse. Névraxe 8, 181–309 (1906).

    Google Scholar 

Download references

Acknowledgements

We thank D. Vaux for his generous sharing of his observations and material in preparation, and D. Tomei, J. Saunders, and J. Kerr for their helpful comments and photographs. The thoughts expressed here were generated under the auspices of an NIH grant to R.A.L. and one to St John's University.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

ced-3

bcl-2

p53

c-Myc

Fas/Apo-1

CED-9

caspase 8

caspase 9

CED-4

APAF-1

FURTHER INFORMATION

Lockshin lab

Zakeri lab

Mechnikov Nobel prize

Levi-Montalcini Nobel prize

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockshin, R., Zakeri, Z. Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol 2, 545–550 (2001). https://doi.org/10.1038/35080097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35080097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing