Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The post-spinel transformation in Mg2SiO4 and its relation to the 660-km seismic discontinuity

Abstract

The 660-km seismic discontinuity in the Earth's mantle has long been identified with the transformation of (Mg,Fe)2SiO4 from γ-spinel (ringwoodite) to (Mg,Fe)SiO3-perovskite and (Mg,Fe)O-magnesiowüstite. This has been based on experimental studies of materials quenched from high pressure and temperature1,2,3, which have shown that the transformation is consistent with the seismically observed sharpness and the depth of the discontinuity at expected mantle temperatures4. But the first in situ examination of this phase transformation in Mg2SiO4 using a multi-anvil press5 indicated that the transformation occurs at a pressure about 2 GPa lower than previously thought (equivalent to 600 km depth) and hence that it may not be associated with the 660-km discontinuity. Here we report the results of an in situ study of Mg2SiO4 at pressures of 20–36 GPa using a combination of double-sided laser-heating and synchrotron X-ray diffraction in a diamond-anvil cell. The phase transformation from γ-Mg2SiO4 to MgSiO3-perovskite and MgO (periclase) is readily observed in both the forward and reverse directions. In contrast to the in situ multi-anvil-press study5, we find that the pressure and temperature of the post-spinel transformation in Mg2SiO4 is consistent with seismic observations4,6 for the 660-km discontinuity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ae, Representative X-ray diffraction patterns at the indicated PT conditions.
Figure 2: Phase diagram of Mg2SiO4.
Figure 3: Pressure difference between two equations of state for periclase16,20 at different PT conditions.
Figure 4: Seismic velocity profiles6 and phase boundaries of mantle constituents near the 660-km discontinuity.

Similar content being viewed by others

References

  1. Liu, L.-G. Post-oxide phases of forsterite and enstatite. Geophys. Res. Lett. 2, 417–419 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Ito, E. & Takahashi, E. Postspinel transformations in the system Mg2SiO4–Fe2SiO4 and some geophysical implications. J. Geophys. Res. 94, 10637–10646 (1989).

    Article  ADS  Google Scholar 

  3. Ito, E., Akaogi, M., Topor, L. & Navrotsky, A. Negative pressure-temperature slopes for reactions forming MgSiO3 perovskite from calorimetry. Science 249, 1275–1278 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Helffrich, G. Topography of the transition zone seismic discontinuities. Rev. Geophys. 38, 141–158 (2000).

    Article  ADS  Google Scholar 

  5. Irifune, T. et al. The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction. Science 279, 1698–1700 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Kennett, B. L. N., Engdahl, E. R. & Buland, R. Constraints on seismic velocities in the Earth from travel times. Geophys. J. Int. 122, 108–124 (1995).

    Article  ADS  Google Scholar 

  7. Shim, S.-H., Duffy, T. S. & Shen, G. The stability and P–V–T equation of state for CaSiO3 perovskite in the earth's lower mantle. J. Geophys. Res. 105, 25955–25968 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Shen, G., Rivers, M. L., Wang, Y. & Sutton, S. R. Laser heated diamond cell system at the Advanced Photon Source for in situ x-ray measurements at high pressure and temperature. Rev. Sci. Instrum. 72, 1273–1282 (2001).

    Article  ADS  CAS  Google Scholar 

  9. Holmes, N. C., Moriarty, J. A., Gathers, G. R. & Nellis, W. J. The equation of state of platinum to 660 GPa (6.6 Mbar). J. Appl. Phys. 66, 2962–2967 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Mao, H.-K., Xu, J. & Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions. J. Geophys. Res. 91, 4673–4676 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Heinz, D. L. Thermal pressure in the laser-heated diamond anvil cell. Geophys. Res. Lett. 17, 1161–1164 (1990).

    Article  ADS  Google Scholar 

  12. Fiquet, G. et al. X-ray diffraction of periclase in a laser-heated diamond-anvil cell. Phys. Earth Planet. Inter. 95, 1–17 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Kavner, A. & Duffy, T. S. Pressure-volume-temperature paths in the laser-heated diamond anvil cell. J. Appl. Phys. 89, 1907–1914 (2001).

    Article  ADS  CAS  Google Scholar 

  14. Boehler, R. High-pressure experiments and the phase diagram of lower mantle and core materials. Rev. Geophys. 38, 221–245 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Singh, A. K. The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. J. Appl. Phys. 73, 4278–4286 (1993).

    Article  ADS  Google Scholar 

  16. Speziale, S. et al. Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure–volume–temperature equations of state. J. Geophys. Res. 106, 515–528 (2001).

    Article  ADS  CAS  Google Scholar 

  17. Meng, Y. et al. In situ high P–T X-ray diffraction studies on three polymorphs (α, β, γ) of Mg2SiO4. J. Geophys. Res. 98, 22199–22207 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Anderson, O. L., Isaak, D. G. & Yamamoto, S. Anharmonicity and the equation of state for gold. J. Appl. Phys. 65, 1534–1543 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Funamori, N. et al. Thermoelastic properties of MgSiO3 perovskite determined by in situ X-ray observations up to 30 GPa and 2000 K. J. Geophys. Res. 101, 8257–8269 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Jamieson, J. C., Frits, J. N. & Manghnani, M. H. in High-Pressure Research in Geophysics (eds Akimoto, S. & Manghnani, M. H.) 27–48 (Center for Academic Publications, Tokyo, 1982).

    Book  Google Scholar 

  21. Fei, Y. Effect of temperature and composition on the bulk modulus of (Mg,Fe)O. Am. Mineral. 84, 272–276 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Dewaele, A., Fiquet, G., Andrault, D. & Häusermann, D. P–V–T equation of state of periclase from synchrotron radiation measurements. J. Geophys. Res. 105, 2869–2877 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Svendsen, B. & Ahrens, T. J. Shock-induced temperatures of MgO. Geophys. J. R. Astron. Soc. 91, 667–691 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Hirose, K. et al. In situ measurements of the phase transition boundary in Mg3Al2Si3O12: implications for the nature of the seismic discontinuities in the Earth's mantle. Earth Planet. Sci. Lett. 184, 567–573 (2001).

    Article  ADS  CAS  Google Scholar 

  25. Anderson, O. L. The volume dependence of thermal pressure in perovskite and other minerals. Phys. Earth Planet. Inter. 112, 267–283 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Rubie, D. C. Characterising the sample environment in multianvil high-pressure experiments. Phase Transit. 68, 431–451 (1999).

    Article  CAS  Google Scholar 

  27. Jackson, I. & Ridgen, S. M. in The Earth's Mantle: Composition, Structure, and Evolution (ed. Jackson, I.) 405–460 (Cambridge University Press, New York, 1998).

    Google Scholar 

  28. Vacher, P., Mocquet, A. & Sotin, C. Computation of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity. Phys. Earth Planet. Inter. 106, 275–298 (1998).

    Article  ADS  CAS  Google Scholar 

  29. Morishima, H. et al. The phase boundary between α-Mg2SiO4 and β-Mg2SiO4 determined by in-situ X-ray observation. Science 265, 1202–1203 (1994).

    Article  ADS  CAS  Google Scholar 

  30. van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  ADS  CAS  Google Scholar 

  31. Kuroda, K. et al. Determination of the phase boundary between ilmenite and perovskite in MgSiO3 by in situ X-ray diffraction and quench experiments. Phys. Chem. Mineral. 27, 523–532 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Speziale for experimental assistance, and F. Dahlen, T. Irifune, Y. Fei, O. Anderson and I. Jackson for discussions. This work was supported by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Heon Shim.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shim, SH., Duffy, T. & Shen, G. The post-spinel transformation in Mg2SiO4 and its relation to the 660-km seismic discontinuity. Nature 411, 571–574 (2001). https://doi.org/10.1038/35079053

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35079053

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing