Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microscopic origins of entropy, heat capacity and the glass transition in proteins

Abstract

Internal motion is central to protein folding1, to protein stability through the resulting residual entropy2, and to protein function1,3,4,5,6,7. Despite its importance, the precise nature of the internal motions of protein macromolecules remains a mystery. Here we report a survey of the temperature dependence of the fast dynamics of methyl-bearing side chains in a calmodulin–peptide complex using site-specific deuterium NMR relaxation methods. The amplitudes of motion had a markedly heterogeneous spectrum and segregated into three largely distinct classes. Other proteins studied at single temperatures tend to segregate similarly. Furthermore, a large variability in the degree of thermal activation of the dynamics in the calmodulin complex indicates a heterogeneous distribution of residual entropy and hence reveals the microscopic origins of heat capacity in proteins. These observations also point to an unexpected explanation for the low-temperature ‘glass transition’ of proteins. It is this transition that has been ascribed to the creation of protein motional modes that are responsible for biological activity5,6,7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fast dynamics of methyl-bearing side chains in a calmodulin–peptide complex.
Figure 2: Fast dynamics of methyl-bearing side chains in proteins.
Figure 3: Distribution of the temperatures at which maximal side-chain order is achieved in the calmodulin–peptide complex.
Figure 4: Temperature dependence of the average S2axis values of methyl-bearing side chains of complexed calmodulin.

Similar content being viewed by others

References

  1. Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscape and motions of proteins. Science 254, 1598–1603 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Karplus, M., Ichiye, T. & Pettitt, B. M. Configurational entropy of native proteins. Biophys. J. 52, 1083–1088 (1987).

    Article  CAS  Google Scholar 

  3. Frauenfelder, H. & Wolynes, P. G. Rate theories and puzzles of hemeprotein kinetics. Science 229, 337–345 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H. & Gunsalus, I. C. Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373 (1975).

    Article  CAS  Google Scholar 

  5. Rasmussen, B. F., Stock, A. M., Ringe, D. & Petsko, G. A. Crystalline ribonuclease A loses function below the dynamical transition at 220K. Nature 357, 423–424 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Zavodszky, P., Kardos, J., Svingor, A. & Petsko, G. A. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc. Natl Acad. Sci. USA 95, 7406–7411 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Feher, V. A. & Cavanagh, J. Millisecond-timescale motions contribute to the function of the bacterial response regulator protein Spo0F. Nature 400, 289–293 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Onuchic, J. N., Luthey-schulten, Z. & Wolynes, P. G. Theory of protein folding: The energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Palmer, A. G. III. Probing molecular motion by NMR. Curr. Opin. Struct. Biol. 7, 732–737 (1997).

    Article  MathSciNet  CAS  Google Scholar 

  10. Nicholson, L. K. et al. Dynamics of methyl groups in proteins as studied by proton-detected 13C-NMR spectroscopy. Application to the leucine residues of staphylococcal nuclease. Biochemistry 31, 5253–5263 (1992).

    Article  CAS  Google Scholar 

  11. Wand, A. J., Urbauer, J. L., McEvoy, R. P. & Bieber, R. J. Internal dynamics of human ubiquitin revealed by 13C-relaxation studies of randomly fractionally labeled protein. Biochemistry 35, 6116–6125 (1996).

    Article  CAS  Google Scholar 

  12. Le Master, D. M. NMR relaxation order parameter analysis of the dynamics of protein side chains. J. Am. Chem. Soc. 121, 1726–1742 (1999).

    Article  CAS  Google Scholar 

  13. Li, Z., Raychaudhuri, S. & Wand, A. J. Insights into the local residual entropy of proteins provided by NMR relaxation. Prot. Sci. 5, 2647–2650 (1996).

    Article  CAS  Google Scholar 

  14. Yang, D. & Kay, L. E. Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J. Mol. Biol. 263, 369–382 (1996).

    Article  CAS  Google Scholar 

  15. Muhandiram, D. R., Yamazaki, T., Sykes, B. D. & Kay, L. E. Measurement of H-2 T1 and T1ρ relaxation-times in uniformly C13-labeled and fractionally H2-labeled proteins in solution. J. Am. Chem. Soc. 117, 11536–11544 (1995).

    Article  CAS  Google Scholar 

  16. Lee, A. L., Kinnear, S. A. & Wand, A. J. Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nature Struct. Biol. 7, 72–77 (2000).

    Article  CAS  Google Scholar 

  17. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    Article  CAS  Google Scholar 

  18. Lee, A. L., Flynn, P. F. & Wand, A. J. Comparison of H-2 and C-13 NMR relaxation techniques for the study of protein methyl group dynamics in solution. J. Am. Chem. Soc. 121, 2891–2902 (1999).

    Article  CAS  Google Scholar 

  19. Mittermaier, A., Kay, L. E. & Forman-Kay, J. D. Analysis of deuterium relaxation-derived methyl axis order parameters and correlation with local structure. J. Biomol. NMR 13, 181–185 (1999).

    Article  CAS  Google Scholar 

  20. Kay, L. E., Muhandiram, D. R., Farrow, N. A., Aubin, Y. & Forman-Kay, J. D. Correlation between dynamics and high affinity binding in an SH2 domain interaction. Biochemistry 35, 361–368 (1996).

    Article  CAS  Google Scholar 

  21. Constantine, K. L. et al. Backbone and side chain dynamics of uncomplexed human adipocyte and muscle fatty acid-binding proteins. Biochemistry 37, 7965–7980 (1998).

    Article  CAS  Google Scholar 

  22. Yang, D., Mittermaier, A., Mok, Y. K. & Kay, L. E. A study of protein side-chain dynamics from new 2H auto-correlation and 13C cross-correlation NMR experiments: application to the N-terminal SH3 domain from drk. J. Mol. Biol. 276, 939–954 (1998).

    Article  CAS  Google Scholar 

  23. Sokolov, A. P. Why the glass transition is still interesting. Science 273, 1675–1676 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Hartmann, H. et al. Conformational substates in a protein: structure and dynamics of metmyoglobin at 80K. Proc. Natl Acad. Sci. USA 79, 4967–4971 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Tilton, R. F. Jr, Dewan, J. C. & Petsko, G. A. Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320K. Biochemistry 31, 2469–2481 (1992).

    Article  CAS  Google Scholar 

  26. Doster, W., Cusack, S. & Perry, W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337, 754–756 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Diehl, M., Doster, W., Petry, W. & Schober, H. Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering. Biophys. J. 73, 2726–2732 (1997).

    Article  CAS  Google Scholar 

  28. Réat, V. et al. Solvent dependence of dynamic transitions in protein solutions. Proc. Natl Acad. Sci. USA 97, 9961–9966 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. W. Englander and K. Sharp for discussions. This work was supported by a grant from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Joshua Wand.

Additional information

The relaxation data has been deposited in the BMRB under accession number 4970.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, A., Wand, A. Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 411, 501–504 (2001). https://doi.org/10.1038/35078119

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078119

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing