Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An Early Cambrian tunicate from China

Abstract

Like the Burgess Shales of Canada, the Chengjiang Lagerstätte from the Lower Cambrian of China is renowned for the detailed preservation as fossils of delicate, soft-bodied creatures1,2,3,4,5,6,7,8,9, providing an insight into the Cambrian explosion. The fossils of possible hemichordate chordates5,6,7 and vertebrates9 have attracted particular attention. Tunicates, or urochordates, comprise the most basal chordate clade10, and details of their evolution could be important in understanding the sequence of character acquisition that led to the emergence of chordates and vertebrates11,12,13,14,15,16,17,18. However, definitive fossils of tunicates from the Cambrian are scarce or debatable4,9,19,20,21,22,23,24. Here we report a probable tunicate Cheungkongella ancestralis from the Chengjiang fauna. It resembles the extant ascidian tunicate genus Styela whose morphology could be useful in understanding the origin of the vertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Lower Cambrian urochordate Cheungkongella ancestralis gen. et sp. nov. from Haikou, Kunming, Yunnan.

Similar content being viewed by others

References

  1. Shu, D.-G., Geyer, G., Chen, L. & Zhang, X.-L. Redlichiacean trilobites with preserved soft-parts from the Lower Cambrian Chengjiang fauna. Beringaria Spec. Iss. 2, 203–241 (1995).

    Google Scholar 

  2. Shu, D.-G., Zhang, X. & Geyer, G. Anatomy and systematic affinities of Lower Cambrian bivalved arthropod Isoxys auritus. Alchringa 19, 333–342 (1995).

    Article  Google Scholar 

  3. Hou, X. & Bergstrom, J. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils Strata 45, 1–115 (1997).

    Google Scholar 

  4. Zhang, X.-L., Shu, D.-G., Li, Y. & Han, J. New sites of Chengjiang fossils: crucial windows on the Cambrian explosion. J. Geol. Soc. Lond. 158, 211–218 (2001).

    Article  Google Scholar 

  5. Chen, J.-Y., Dzik, J,, Edgecombe, G. D., Ramskoeld, L. & Zhou, G.-Q. A possible early Cambrian chordate. Nature 377, 720–722 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Shu, D.-G. & Zhang, X.-L. Reinterpretation of Yunnanozoon as the earliest known hemichordate. Nature 380, 428–430 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Shu, D.-G., Conway Morris, S. & Zhang, X.-L. A Pikaia-like chordate from the Lower Cambrian of China. Nature 384, 156–157 (1996).

    Article  ADS  Google Scholar 

  8. Shu, D. et al. A pipiscid-like fossil from the Lower Cambrian of South China. Nature 400, 746–749 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Shu, D. et al. Lower Cambrian vertebrates from South China. Nature 402, 42–46 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Cameron, C. B., Garey, J. R. & Swalla, B. J. Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proc. Natl Acad. Sci. USA 97, 4469–4474 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Garstang, W. The morphology of the Tunicata and its bearing on the phylogeny of the Chordata. J. Microscop. Soc. 72, 51–87 (1928).

    Google Scholar 

  12. Romer, A. S. The Vertebrate Story (Univ. Chicago Press, 1971).

    Google Scholar 

  13. Gee, H. Before the Backbone: Views on the Origins of Vertebrates (Chapman and Hall, London, 1996).

    Google Scholar 

  14. Ogasawara, M., Di Lauro, R. & Satoh, N. Ascidian homologs of mammalian thyroid transcription Factor-1 gene expressed in the endostyle. Zool. Sci. 16, 559–565 (1999).

    Article  CAS  Google Scholar 

  15. De Gregorio, A. & Levine, M. Ascidian embryogenesis and the origins of the chordate body plan. Curr. Opin. Genet. Dev. 8, 457–463 (1998).

    Article  Google Scholar 

  16. Swalla, B. J. et al. Urochordates are monophyletic within the deuterostomes. System. Biol. 49, 52–64 (2000).

    Article  CAS  Google Scholar 

  17. Nielsen, C. Animal Evolution: Interrelationships of Living Phyla (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  18. Conway Morris, S. in Atlas of the Burgess Shale (ed. Conway Morris, S.) 26 (Palaeontological Association, London, 1982).

    Google Scholar 

  19. Briggs, D. E. G. et al. The Fossils of the Burgess Shale (Smithsonian, Washington, 1994).

    Google Scholar 

  20. Satoh, N. Developmental Biology of Ascidians (Cambridge Univ. Press, New York, 1994).

    Google Scholar 

  21. Mueller, K. J. Palaeobotryllus from the Upper Cambrian of Nevada—a possible ascidian. Lethaia 10, 107–118 (1977).

    Article  Google Scholar 

  22. Lehnert, O., Miller, J. F. & Cochrane, K. Alaeobotryllus and friends: Cambro-Ordovician record of probable ascidian tunicates. Acta Univ. Carol. Geol. 43, 447–450 (1999).

    Google Scholar 

  23. Lohmann, H. Oesia disjuncta Walcott, eine Appendicularie aus dem Kambrium. Mitt. Zool. Mus. Hamburg 38, 69–75 (1922).

    Google Scholar 

  24. Zhang, A. Fossil appendicularians in the early Cambrian. Scient. Sinica B 30, 888–896 (1987).

    CAS  Google Scholar 

  25. Meglitsch, P. A. & Schram, F. P. Invertebrate Zoology 3rd edn, 576–587 (Oxford Univ. Press, 1991).

    Google Scholar 

  26. Wada, H. & Satoh, N. Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc. Natl Acad. Sci. USA 91, 1801–1804 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Berrill, N. J. The Origin of Vertebrates (Oxford Univ. Press, Oxford, 1955)

    Google Scholar 

  28. Carter, G. S. Chordate Phylogeny. Syst. Zool. 6, 187–192 (1957).

    Article  Google Scholar 

  29. Jollie, M. What are the ‘Calcichordata’? and the larger question of the origin of chordates. Zool. J. Linn. Soc. 75, 167–188 (1982).

    Article  Google Scholar 

  30. Wada, H. Evolutionary history of free-swimming and sessile lifestyles in urochordates as deduced from 18S rDNA molecular phylogeny. Mol. Biol. Evol. 15, 1189–1194 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Sciences and Technology of China, National Natural Science Foundation of China, Ministry of Education of China and Cheung Kong Scholars Programme, Sciences and Technology Committee of Shaanxi Province, and National Geographic Society, USA. We are grateful to B. J. Swalla and S. Conway Morris for suggestions. We thank N. Satoh, K. Yasui, H. Wada, R. P. S. Jefferies and S. M. Shimeld for remarks. We also thank Z. Luo, Z. Zhang, L. Guo, F. Yao and H. Liu for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.-G. Shu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, DG., Chen, L., Han, J. et al. An Early Cambrian tunicate from China. Nature 411, 472–473 (2001). https://doi.org/10.1038/35078069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078069

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing