Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An aminoacyl tRNA synthetase whose sequence fits into neither of the two known classes

Abstract

Aminoacyl transfer RNA synthetases catalyse the first step of protein synthesis and establish the rules of the genetic code through the aminoacylation of tRNAs. There is a distinct synthetase for each of the 20 amino acids and throughout evolution these enzymes have been divided into two classes of ten enzymes each1,2. These classes are defined by the distinct architectures of their active sites, which are associated with specific and universal sequence motifs1,2,3,4,5. Because the synthesis of aminoacyl-tRNAs containing each of the twenty amino acids is a universally conserved, essential reaction, the absence of a recognizable gene for cysteinyl tRNA synthetase in the genomes of Archae such as Methanococcus jannaschii and Methanobacterium thermoautotrophicum6,7,8 has been difficult to interpret. Here we describe a different cysteinyl-tRNA synthetase from M. jannaschii and Deinococcus radiodurans and its characterization in vitro and in vivo. This protein lacks the characteristic sequence motifs seen in the more than 700 known members of the two canonical classes of tRNA synthetase and may be of ancient origin. The existence of this protein contrasts with proposals that aminoacylation with cysteine in M. jannaschii is an auxiliary function of a canonical prolyl-tRNA synthetase9,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calibration of the orthologue detection procedure for the M. jannaschii genome (see Methods).
Figure 2: Experimental characterization of the enzymatic activity of MJ1477.
Figure 3: Multiple sequence alignment of MJ1477 with the close homologues detected by PSI-BLAST11.
Figure 4: Complementation of the growth defect at 42 °C of E. coli strain UQ818.

Similar content being viewed by others

References

  1. Eriani, G., Delarue, M., Poch, O., Gangloff, J. & Moras, D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347, 203–206 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Cusack, S., Berthet-Colominas, C., Hartlein, M., Nasar, N. & Leberman, R. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å. Nature 347, 249–255 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Webster, T., Tsai, H., Kula, M., Mackie, G. A. & Schimmel, P. Specific sequence homology and three-dimensional structure of an aminoacyl transfer RNA synthetase. Science 226, 1315–1317 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Hountondji, C., Dessen, P. & Blanquet, S. Sequence similarities among the family of aminoacyl-tRNA synthetases. Biochimie 68, 1071–1078 (1986).

    Article  CAS  Google Scholar 

  5. Ludmerer, S. W. & Schimmel, P. Gene for yeast glutamine tRNA synthetase encodes a large amino-terminal extension and provides a strong confirmation of the signature sequence for a group of the aminoacyl-tRNA synthetases. J. Biol. Chem. 262, 10801–10806 (1987).

    CAS  PubMed  Google Scholar 

  6. Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Smith, D. R. et al. Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J. Bacteriol. 179, 7135–7155 (1997).

    Article  CAS  Google Scholar 

  8. Reeve, J. N. Archaebacteria then . . . Archaes now (are there really no archaeal pathogens?). J. Bacteriol. 181, 3613–3617 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stathopoulos, C. et al. One polypeptide with two aminoacyl-tRNA synthetase activities. Science 287, 479–482 (2000).

    Article  ADS  CAS  Google Scholar 

  10. Lipman, R. S., Sowers, K. R. & Hou, Y. M. Synthesis of cysteinyl-tRNACys by a genome that lacks the normal cysteine-tRNA synthetase. Biochemistry 39, 7792–7798 (2000).

    Article  CAS  Google Scholar 

  11. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  12. Hamann, C. S., Sowers, K. R., Lipman, R. S. & Hou, Y. M. An archaeal aminoacyl-tRNA synthetase missing from genomic analysis. J. Bacteriol. 181, 5880–5884 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bunjun, S. et al. A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia. Proc. Natl Acad. Sci. USA 97, 12997–13002 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Chung, S. Y. & Subbiah, S. A structural explanation for the twilight zone of protein sequence homology. Structure 4, 1123–1127 (1996).

    Article  CAS  Google Scholar 

  15. Rost, B. Twilight zone of protein sequence alignments. Protein Eng. 12, 85–94 (1999).

    Article  CAS  Google Scholar 

  16. Bohman, K. & Isaksson, L. A. Temperature-sensitive mutants in cysteinyl-tRNA ligase of E. coli K-12. Mol. Gen. Genet. 176, 53–55 (1979).

    Article  CAS  Google Scholar 

  17. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  18. Woese, C. R. Interpreting the universal phylogenetic tree. Proc. Natl Acad. Sci. USA 97, 8392–8396 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Johnson, R. A. & Wichern, D. W. Applied Multivariate Statistical Analysis (Prentice Hall, Upper Saddler River, New Jersey, 1992).

    MATH  Google Scholar 

  20. Needleman, S. B. & Wunsch, C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970).

    Article  CAS  Google Scholar 

  21. Abagyan, R. A. & Batalov, S. Do aligned sequences share the same fold? J. Mol. Biol. 273, 355–368 (1997).

    Article  CAS  Google Scholar 

  22. Sambrook, J., Fitsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  23. Glasfeld, E., Landro, J. A. & Schimmel, P. C-terminal zinc-containing peptide required for RNA recognition by a class I tRNA synthetase. Biochemistry 35, 4139–4145 (1996).

    Article  CAS  Google Scholar 

  24. Fersht, A. R. et al. Active site titration and aminocyl adenylate binding stoichiometry of aminoacyl-tRNA synthetases. Biochemistry 14, 1–4 (1975).

    Article  CAS  Google Scholar 

  25. Amann, E., Ochs, B. & Abel, K. J. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69, 301–315 (1988).

    Article  CAS  Google Scholar 

  26. Mukhopadhyay, B., Johnson, E. F. & Wolfe, R. S. Reactor-scale cultivation of the hyperthermophilic methanarchaeon Methanococcus jannaschii to high cell densities. Appl. Environ. Microbiol. 65, 5059–5065 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hale, S. P., Auld, D. S., Schmidt, E. & Schimmel, P. Discrete determinants in transfer RNA for editing and aminoacylation. Science 276, 1250–1252 (1997).

    Article  CAS  Google Scholar 

  28. Calender, R. & Berg, P. Purification and physical characterization of tyrosyl ribonucleic acid synthetases from Escherichia coli and Bacillus subtilis. Biochemistry 5, 1681–1690 (1966).

    Article  Google Scholar 

  29. Shepard, A., Shiba, K. & Schimmel, P. RNA binding determinant in some class I tRNA synthetases identified by alignment-guided mutagenesis. Proc. Natl Acad. Sci. USA 89, 9964–9968 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (P.S. and to R. S. Wolfe) and the Department of Energy (to R. S. Wolfe) and by a fellowship from the National Foundation for Cancer Research (P.S.). Mount Sinai School of Medicine start-up funds are acknowledged (A.R.O.). We thank Y.-M. Hou for E. coli CysRS protein and R. Turner for advice. We thank S. Cusack for reading the manuscript before submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Schimmel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fàbrega, C., Farrow, M., Mukhopadhyay, B. et al. An aminoacyl tRNA synthetase whose sequence fits into neither of the two known classes. Nature 411, 110–114 (2001). https://doi.org/10.1038/35075121

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35075121

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing