Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Foci of orientation plasticity in visual cortex

Abstract

Cortical areas are generally assumed to be uniform in their capacity for adaptive changes or plasticity1,2,3,4. Here we demonstrate, however, that neurons in the cat striate cortex (V1) show pronounced adaptation-induced short-term plasticity of orientation tuning primarily at specific foci. V1 neurons are clustered according to their orientation preference in iso-orientation domains5 that converge at singularities or pinwheel centres6,7. Although neurons in pinwheel centres have similar orientation tuning and responses to those in iso-orientation domains, we find that they differ markedly in their capacity for adaptive changes. Adaptation with an oriented drifting grating stimulus alters responses of neurons located at and near pinwheel centres to a broad range of orientations, causing repulsive shifts in orientation preference and changes in response magnitude. In contrast, neurons located in iso-orientation domains show minimal changes in their tuning properties after adaptation. The anisotropy of adaptation-induced orientation plasticity is probably mediated by inhomogeneities in local intracortical interactions that are overlaid on the map of orientation preference in V1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adaptation-induced plasticity of orientation tuning and the orientation architecture of V1.
Figure 2: Population analysis of adaptation-induced orientation plasticity.
Figure 3: Relationship between local orientation distribution at the recording site and the degree of orientation plasticity.
Figure 4: Relationship between eye preference and the degree of orientation plasticity.

Similar content being viewed by others

References

  1. Gilbert, C. D. & Wiesel, T. N. Receptive field dynamics in adult primary visual cortex. Nature 356, 150–152 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Wang, X., Merzenich, M. M., Sameshima, K. & Jenkins, W. M. Remodelling of hand representation in adult cortex determined by timing of tactile stimulation. Nature 378, 71–75 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Fregnac, Y. & Shulz, D. E. Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning. J. Neurobiol. 41, 69–82 (1999).

    Article  CAS  Google Scholar 

  4. Eysel, U. T. & Schweigart, G. Increased receptive field size in the surround of chronic lesions in the adult cat visual cortex. Cereb. Cortex 9, 101–109 (1999).

    Article  CAS  Google Scholar 

  5. Hubel, D. H. & Wiesel, T. N. Sequence regularity and geometry of orientation columns in the monkey striate cortex. J. Comp. Neurol. 158, 267–293 (1974).

    Article  CAS  Google Scholar 

  6. Bonhoeffer, T. & Grinvald, A. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353, 429–431 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Blasdel, G. G. Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex. J. Neurosci. 12, 3115–3138 (1992).

    Article  CAS  Google Scholar 

  8. Das, A. & Gilbert, C. D. Topography of contextual modulations mediated by short-range interactions in primary visual cortex. Nature 399, 655–661 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Maldonado, P. E., Godecke, I., Gray, C. M. & Bonhoeffer, T. Orientation selectivity in pinwheel centers in cat striate cortex. Science 276, 1551–1555 (1997).

    Article  CAS  Google Scholar 

  10. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  11. Reid, R. C. & Alonso, J. M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378, 281–284 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Ferster, D., Chung, S. & Wheat, H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 21, 249–252 (1996).

    Article  ADS  Google Scholar 

  13. Somers, D. C., Nelson, S. B. & Sur, M. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465 (1995).

    Article  CAS  Google Scholar 

  14. Dragoi, V., Sharma, J. & Sur, M. Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28, 287–298 (2000).

    Article  CAS  Google Scholar 

  15. Hammond, P., Pomfrett, C. J. & Ahmed, B. Neural motion after-effects in the cat's striate cortex: orientation selectivity. Vision Res. 29, 1671–1683 (1989).

    Article  CAS  Google Scholar 

  16. Saul, A. B. & Cynader, M. S. Adaptation in single units in visual cortex: the tuning of aftereffects in the spatial domain. Vis. Neurosci. 2, 593–607 (1989).

    Article  CAS  Google Scholar 

  17. Dragoi, V., Sharma, J., Miller, E. K. M. & Sur, M. Dynamics of orientation adaptation in awake monkey V1 revealed by reverse correlation. Soc. Neurosci. Abstr. 25, 1548 (1999).

    Google Scholar 

  18. Muller, J. R., Metha, A. B., Krauskopf, J. & Lennie, P. Rapid adaptation in visual cortex to the structure of images. Science 285, 1405–1408 (1999).

    Article  CAS  Google Scholar 

  19. Hata, Y., Tsumoto, T., Sato, H. & Tamura, H. Horizontal interactions between visual cortical neurones studied by cross-correlation analysis in the cat. J. Physiol. 441, 593–614 (1991).

    Article  CAS  Google Scholar 

  20. Weliky, M., Kandler, K., Fitzpatrick, D. & Katz, L. C. Patterns of excitation and inhibition evoked by horizontal connections in visual cortex share a common relationship to orientation columns. Neuron 15, 541–552 (1995).

    Article  CAS  Google Scholar 

  21. Kisvarday, Z. F., Toth, E., Rausch, M. & Eysel, U. T. Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cereb. Cortex 7, 605–618 (1997).

    Article  CAS  Google Scholar 

  22. Crair, M. C., Ruthazer, E. S., Gillespie, D. C. & Stryker, M. P. Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. J. Neurophysiol. 77, 3381–3385 (1997).

    Article  CAS  Google Scholar 

  23. Hubener, M., Shoham, D., Grinvald, A. & Bonhoeffer, T. Spatial relationships among three columnar systems in cat area 17. J. Neurosci. 17, 9270–9284 (1997).

    Article  CAS  Google Scholar 

  24. Isa, N. P., Trepel, C. & Stryker, M. P. Spatial frequency maps in cat visual cortex. J. Neurosci. 20, 8504–8514 (2000).

    Article  Google Scholar 

  25. Sanchez-Vives, M. V., Nowak, L. G. & McCormick, D. A. Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J. Neurosci. 20, 4267–4285 (2000).

    Article  CAS  Google Scholar 

  26. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 275, 220–224 (1997).

    Article  CAS  Google Scholar 

  27. Dragoi, V. & Sur, M. Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects. J. Neurophysiol. 83, 1019–1030 (2000).

    Article  CAS  Google Scholar 

  28. Somers, D. C., Dragoi, V. & Sur, M. in Cerebral Cortex: The Cat Primary Visual Cortex. (eds Peters, A. & Payne, B.)(Academic, San Diego, in the press).

  29. Coppola, D. M., Purves, H. R., McCoy, A. N. & Purves, D. The distribution of oriented contours in the real world. Proc. Natl Acad. Sci. USA 95, 4002–4006 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Wörgötter, F. & Eysel, U. T. Correlations between directional and orientational tuning of cells in cat striate cortex. Exp. Brain Res. 83, 665–669 (1991).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Schummers for discussions. This work was supported by a Merck Fellowship (V.D.) and by grants from the NIH (M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Dragoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragoi, V., Rivadulla, C. & Sur, M. Foci of orientation plasticity in visual cortex. Nature 411, 80–86 (2001). https://doi.org/10.1038/35075070

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35075070

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing