Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Versatility of the mitochondrial protein import machinery

Key Points

  • Mitochondria comprise 15–20% of the proteins of a cell. Only very few mitochondrial proteins are synthesized inside the organelle. Over 98% of mitochondrial proteins are made as preproteins in the cytosol.

  • The typical mitochondrial preproteins contain amino-terminal signal sequences (presequences) that are removed after import into the organelle. A large second class of hydrophobic preproteins do not carry cleavable presequences, but several internal signals.

  • The translocase of the outer mitochondrial membrane (TOM) contains receptors and a general import pore (GIP). Presequence-containing preproteins are recognized by the receptors Tom20 and Tom22, whereas preproteins with internal signals are preferentially recognized by Tom70. All preproteins are imported by the same GIP formed by the channel protein Tom40.

  • The mitochondrial inner membrane contains two distinct translocases. Presequence-containing preproteins are directed into the TIM23 complex in a membrane potential-dependent manner. Matrix Hsp70 interacts with the TIM23 complex through Tim44 and functions as ATP-dependent motor to drive import of the preproteins into the matrix.

  • The second pathway into the inner membrane is used by hydrophobic preproteins with several internal signals. They are guided through the intermembrane space by tiny Tim proteins (Tim9–Tim10) and dock to the membrane-integrated TIM22 complex. In a membrane potential-dependent manner, the preproteins are inserted into the TIM22 complex and are probably laterally released into the inner membrane.

  • Several variations in these pathways exist for special preproteins. Preproteins carrying additional sorting signals can diverge from the main pathways at distinct stages and are sorted to mitochondrial subcompartments.

Abstract

The vast majority of mitochondrial proteins are synthesized in the cytosol and are imported into mitochondria by protein machineries located in the mitochondrial membranes. It has become clear that hydrophilic as well as hydrophobic preproteins use a common translocase in the outer mitochondrial membrane, but diverge to two distinct translocases in the inner membrane. The translocases are dynamic, high-molecular-weight complexes that have to provide specific means for the recognition of preproteins, channel formation and generation of import-driving forces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The two main pathways of protein import into mitochondria.
Figure 2: The translocase of the inner mitochondrial membrane for presequence-carrying preproteins.
Figure 3: Import of a hydrophobic carrier protein into the inner mitochondrial membrane.
Figure 4: Variations on mitochondrial import pathways.

Similar content being viewed by others

References

  1. Blobel, G. Intracellular protein topogenesis. Proc. Natl Acad. Sci. USA 77, 1496–1500 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hallermayer, G., Zimmermann, R. & Neupert, W. Kinetic studies on the transport of cytoplasmically synthesized proteins into the mitochondria in intact cells of Neurospora crassa. Eur. J. Biochem. 81, 523– 532 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. Reid, G. A. & Schatz, G. Import of proteins into mitochondria: extramitochondrial pools and post-translational import of mitochondrial protein precursors in vivo. J. Biol. Chem. 257, 13062–13067 (1982).

    CAS  PubMed  Google Scholar 

  4. Wienhues, U. et al. Protein folding causes an arrest of preprotein translocation into mitochondria in vivo. J. Cell Biol. 115 , 1601–1609 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Hurt, E. C., Pesold-Hurt, B. & Schatz, G. The cleavable prepiece of an imported mitochondrial protein is sufficient to direct cytosolic dihydrofolate reductase into the mitochondrial matrix. FEBS Lett. 178, 306 –310 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Horwich, A. L., Kalousek, F., Mellman, I. & Rosenberg, L. E. A leader peptide is sufficient to direct mitochondrial import of a chimeric protein. EMBO J. 4, 1129– 1135 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brix, J., Rüdiger, S., Bukau, B., Schneider-Mergener, J. & Pfanner, N. Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein . J. Biol. Chem. 274, 16522– 16530 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Zimmermann, R. & Neupert, W. Transport of proteins into mitochondria: posttranslational transfer of ADP/ATP carrier into mitochondria in vitro . Eur. J. Biochem. 109, 217– 229 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Pfanner, N. & Neupert, W. Distinct steps in the import of ADP/ATP carrier into mitochondria. J. Biol. Chem. 262 , 7528–7536 (1987).

    CAS  PubMed  Google Scholar 

  10. Komiya, T., Rospert, S., Schatz, G. & Mihara, K. Binding of mitochondrial precursor proteins to the cytoplasmic domains of the import receptors Tom70 and Tom20 is determined by cytoplasmic chaperones. EMBO J. 16, 4267–4275 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Söllner, T. et al. Mapping of the protein import machinery in the mitochondrial outer membrane by crosslinking of translocation intermediates. Nature 355, 84–87 ( 1992).

    Article  PubMed  Google Scholar 

  12. Bolliger, L., Junne, T., Schatz, G. & Lithgow, T. Acidic receptor domains on both sides of the outer membrane mediate translocation of precursor proteins into yeast mitochondria. EMBO J. 14, 6318–6326 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brix, J., Dietmeier, K. & Pfanner, N. Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J. Biol. Chem. 272, 20730– 20735 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Abe, Y. et al. Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100, 551–560 (2000).First high-resolution structure of a preprotein receptor in a complex with an amphiphilic helical presequence.

    Article  CAS  PubMed  Google Scholar 

  15. Eilers, M. & Schatz, G. Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322, 228–232 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  16. Wiedemann, N., Pfanner, N. & Ryan, M. T. The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J. 20, 951–960 (2001). Import of hydrophobic carrier proteins is not directed by a single targeting region, but several signals distributed over the protein cooperate in receptor recruitment and membrane translocation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dekker, P. J. et al. Preprotein translocase of the outer mitochondrial membrane: molecular dissection and assembly of the general import pore complex. Mol. Cell Biol. 18, 6515–6524 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Künkele, K. P. et al. The preprotein translocation channel of the outer membrane of mitochondria. Cell 93, 1009– 1019 (1998).Purification and analysis of the TOM complex of the mitochondrial outer membrane. This study provides evidence for the presence of two to three pore-like structures.

    Article  PubMed  Google Scholar 

  19. Dekker, P. J. et al. The Tim core complex defines the number of mitochondrial translocation contact sites and can hold arrested preproteins in the absence of matrix Hsp70–Tim44 . EMBO J. 16, 5408–5419 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bauer, M. F., Sirrenberg, C., Neupert, W. & Brunner, M. Role of Tim23 as voltage sensor and presequence receptor in protein import into mitochondria. Cell 87, 33– 41 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Lohret, T. A., Jensen, R. E. & Kinnally, K. W. Tim23, a protein import component of the mitochondrial inner membrane, is required for normal activity of the multiple conductance channel, MCC. J. Cell Biol. 137, 377– 386 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martin, J., Mahlke, K. & Pfanner, N. Role of an energized inner membrane in mitochondrial protein import: Δψ drives the movement of presequences. J. Biol. Chem. 266, 18051–18057 (1991).

    CAS  PubMed  Google Scholar 

  23. Kang, P. J. et al. Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature 348, 137–143 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Horst, M. et al. Sequential action of two hsp70 complexes during protein import into mitochondria. EMBO J. 16, 1842– 1849 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Voos, W. et al. Differential requirement for the mitochondrial Hsp70–Tim44 complex in unfolding and translocation of preproteins. EMBO J. 15, 2668–2677 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schneider, H.-C., Westermann, B., Neupert, W. & Brunner, M. The nucleotide exchange factor MGE exerts a key function in the ATP-dependent cycle of mt-Hsp70–Tim44 interaction driving mitochondrial protein import . EMBO J. 15, 5796–5803 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hawlitschek, G. et al. Mitochondrial protein import: identification of processing peptidase and of PEP, a processing enhancing protein. Cell 53, 795–806 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Ostermann, J., Horwich, A. L., Neupert, W. & Hartl, F.-U. Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 341, 125– 130 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Rassow, J. et al. Cyclophilin 20 is involved in mitochondrial protein folding in cooperation with molecular chaperones Hsp70 and Hsp60. Mol. Cell Biol. 15, 2654–2662 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rospert, S. et al. Hsp60-independent protein folding in the matrix of yeast mitochondria . EMBO J. 15, 764–774 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sirrenberg, C., Bauer, M. F., Guiard, B., Neupert, W. & Brunner, M. Import of carrier proteins into the mitochondrial inner membrane mediated by Tim22. Nature 384, 582–585 (1996).Identification of Tim22, the first component of the carrier translocase of the inner mitochondrial membrane.

    Article  CAS  PubMed  Google Scholar 

  32. Kerscher, O., Holder, J., Srinivasan, M., Leung, R. S. & Jensen, R. E. The Tim54p–Tim22p complex mediates insertion of proteins into the mitochondrial inner membrane. J. Cell. Biol. 139, 1663–1675 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koehler, C. M. et al. Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. Science 279, 369–373 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Sirrenberg, C. et al. Carrier protein import into mitochondria mediated by the intermembrane proteins Tim10/Mrs11 and Tim12/Mrs5. Nature 391, 912–915 (1998).References 33 and 34 show that tiny Tim proteins in the intermembrane space are required for the transfer of hydrophobic carrier proteins through the aqueous space between mitochondrial outer and inner membranes.

    Article  CAS  PubMed  Google Scholar 

  35. von Heijne, G., Steppuhn, J. & Herrmann, R. G. Domain structure of mitochondrial and chloroplast targeting peptides. Eur. J. Biochem. 180, 535–545 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Roise, D., Horvath, S. J., Tomich, J. M., Richards, J. H. & Schatz, G. A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J. 5, 1327–1334 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rospert, S., Junne, T., Glick, B. S. & Schatz, G. Cloning and disruption of the gene encoding yeast mitochondrial chaperonin 10, the homolog of E. coli groES. FEBS Lett. 335, 358– 360 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, C. M., Sedman, J., Neupert, W. & Stuart, R. A. The DNA helicase, Hmi1p, is transported into mitochondria by a C-terminal cleavable targeting signal. J. Biol. Chem. 274, 20937– 20942 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Glick, B. S. et al. Cytochromes c 1 and b 2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism. Cell 69, 809– 822 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Hahne, K., Haucke, V., Ramage, L. & Schatz, G. Incomplete arrest in the outer membrane sorts NADH-cytochrome b 5 reductase to two different submitochondrial compartments. Cell 79, 829–839 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Gärtner, F., Bömer, U., Guiard, B. & Pfanner, N. The sorting signal of cytochrome b 2 promotes early divergence from the general mitochondrial import pathway and restricts the unfoldase activity of matrix Hsp70. EMBO J. 14, 6043 –6057 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Beasley, E. M., Müller, S. & Schatz, G. The signal that sorts yeast cytochrome b 2 to the mitochondrial intermembrane space contains three distinct functional regions. EMBO J. 12, 2303– 2311 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bömer, U. et al. The sorting route of cytochrome b 2 branches from the general mitochondrial import pathway at the preprotein translocase of the inner membrane. J. Biol. Chem. 272, 30439–30446 (1997).

    Article  PubMed  Google Scholar 

  44. Gärtner, F. et al. Mitochondrial import of subunit Va of cytochrome c oxidase characterized with yeast mutants: independence from receptors, but requirement for matrix hsp70 translocase function. J. Biol. Chem. 270, 3788–3795 ( 1995).

    Article  PubMed  Google Scholar 

  45. Schneider, A. et al. Inner membrane protease I, an enzyme mediating intramitochondrial protein sorting in yeast. EMBO J. 10, 247 –254 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nunnari, J., Fox, T. D. & Walter, P. A mitochondrial protease with two catalytic subunits of nonoverlapping specificities. Science 262, 1997–2004 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Fölsch, H., Guiard, B., Neupert, W. & Stuart, R. A. Internal targeting signal of the BCS1 protein: a novel mechanism of import into mitochondria . EMBO J. 15, 479–487 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hartl, F.-U., Schmidt, B., Wachter, E., Weiss, H. & Neupert, W. Transport into mitochondria and intramitochondrial sorting of the Fe/S protein of ubiquinol–cytochrome c reductase. Cell 47, 939–951 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  49. Endres, M., Neupert, W. & Brunner, M. Transport of the ADP/ATP carrier of mitochondria from the TOM complex to the TIM22–54 complex. EMBO J. 18, 3214–3221 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brix, J. et al. The mitochondrial import receptor Tom70: identification of a 25 kDa core domain with a specific binding site for preproteins. J. Mol. Biol. 303, 479–488 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Davis, A. J., Ryan, K. R. & Jensen, R. E. Tim23p contains separate and distinct signals for targeting to mitochondria and insertion into the inner membrane. Mol. Biol. Cell 9, 2577–2593 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Davis, A. J., Sepuri, N. B., Holder, J., Johnson, A. E. & Jensen, R. E. Two intermembrane space TIM complexes interact with different domains of Tim23p during its import into mitochondria . J. Cell. Biol. 150, 1271– 1282 (2000).The precursor of the inner membrane protein Tim23 contains distinct internal import signals. Both intermembrane space complexes, Tim9–Tim10 and Tim8–Tim13, are involved in its import, but interact with different segments of the precursor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Paschen, S. A. et al. The role of the TIM8–13 complex in the import of Tim23 into mitochondria. EMBO J. 19, 6392– 6400 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ahting, U. et al. The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J. Cell. Biol. 147, 959–968 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van Wilpe, S. et al. Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase. Nature 401, 485– 489 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Meisinger, C. et al. Protein import channel of the outer mitochondrial membrane: a highly stable Tom40–Tom22 core structure differentially interacts with preproteins, small Tom proteins and import receptors. Mol. Cell Biol. 21, 2337–2348 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dietmeier, K. et al. Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature 388, 195–200 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Kurz, M., Martin, H., Rassow, J., Pfanner, N., & Ryan, M. T. Biogenesis of Tim proteins of the mitochondrial carrier import pathway: differential targeting mechanisms and crossing over with the main import pathway. Mol. Biol. Cell 10, 2461–2474 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hill, K. et al. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395, 516– 521 (1998).Reconstitution of the translocation channel of the TOM machinery, which shows that Tom40 is the pore-forming subunit and that it provides a specific binding site for presequences.

    Article  CAS  PubMed  Google Scholar 

  60. Baker, K. P., Schaniel, A., Vestweber, D. & Schatz, G. A yeast mitochondrial outer membrane protein essential for protein import and cell viability. Nature 348, 605– 609 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Schwartz, M. P. & Matouschek, A. The dimensions of the protein import channels in the outer and inner mitochondrial membranes . Proc. Natl Acad. Sci. USA 96, 13086– 13090 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moczko, M. et al. The intermembrane space domain of mitochondrial Tom22 functions as a trans binding site for preproteins with N-terminal targeting sequences . Mol. Cell. Biol. 17, 6574– 6584 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Komiya, T. et al. Interaction of mitochondrial targeting signals with acidic receptor domains along the protein import pathway: evidence for the 'acid chain' hypothesis. EMBO J. 17, 3886– 3898 (1998).The purified cytosolic or intermembrane space domains of several Tom proteins and Tim23 interact with mitochondrial preproteins in a sequential manner, supporting the model of a chain of binding sites that guide the import of preproteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hönlinger, A. et al. Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import. EMBO J. 15, 2125–2137 ( 1996).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Krimmer, T. et al. Biogenesis of porin of the outer mitochondrial membrane involves an import pathway via receptors and the general import pore of the TOM complex . J. Cell Biol. 152, 289– 300 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hwang, S., Jascur, T., Vestweber, D., Pon, L. & Schatz, G. Disrupted yeast mitochondria can import precursor proteins directly through their inner membrane. J. Cell Biol. 109, 487–493 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Horst, M., Hilfiker-Rothenfluh, S., Oppliger, W. & Schatz, G. Dynamic interaction of the protein translocation systems in the inner and outer membranes of yeast mitochondria. EMBO J. 14, 2293–2297 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Emtage, J. L. T. & Jensen, R. E. MAS6 encodes an essential inner membrane component of the yeast mitochondrial protein import pathway. J. Cell Biol. 122, 1003– 1012 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Kübrich, M. et al. The polytopic mitochondrial inner membrane proteins MIM17 and MIM23 operate at the same preprotein import site. FEBS Lett. 349, 222–228 ( 1994).

    Article  PubMed  Google Scholar 

  70. Donzeau, M. et al. Tim23 links the inner and outer mitochondrial membranes. Cell 101, 401–412 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  71. Geissler, A. et al. Membrane potential-driven protein import into mitochondria: the sorting sequence of cytochrome b 2 modulates the Δψ-dependence of translocation of the matrix-targeting sequence. Mol. Biol. Cell 11, 3977–3991 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Voisine, C. et al. The protein import motor of mitochondria: unfolding and trapping of preproteins are distinct and separable functions of matrix Hsp70. Cell 97, 565–574 ( 1999).The role of the molecular chaperone mtHsp70 in driving protein import into mitochondria cannot be explained by a single mechanism but involves both pulling and trapping of preproteins.

    Article  CAS  PubMed  Google Scholar 

  73. Krimmer, T., Rassow, J., Kunau, W. H., Voos, W. & Pfanner, N. Mitochondrial protein import motor: the ATPase domain of matrix Hsp70 is crucial for binding to Tim44, while the peptide binding domain and the carboxy-terminal segment play a stimulatory role. Mol. Cell Biol. 20, 5879–5887 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Matouschek, A. et al. Active unfolding of precursor proteins during mitochondrial protein import. EMBO J. 16, 6727– 6736 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gaume, B. et al. Unfolding of preproteins upon import into mitochondria. EMBO J. 17, 6497–6507 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chauwin, J. F., Oster, G. & Glick, B. S. Strong precursor–pore interactions constrain models for mitochondrial protein import. Biophys. J. 74, 1732–1743 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang, S., Ratliff, K. S., Schwartz, M. P., Spenner, J. M. & Matouschek, A. Mitochondria unfold precursor proteins by unraveling them from their N-termini. Nature Struct. Biol. 6, 1132–1138 ( 1999).The mitochondrial import machinery changes the unfolding pathway of a model protein (compared with unfolding in solution), showing that mitochondria catalyse unfolding of preproteins.

    Article  CAS  PubMed  Google Scholar 

  78. Bömer, U. et al. Multiple interactions of components mediating preprotein translocation across the inner mitochondrial membrane. EMBO J. 16 , 2205–2216 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kerscher, O., Sepuri, N. B. & Jensen, R. E. Tim18p is a new component of the Tim54p–Tim22p translocon in the mitochondrial inner membrane. Mol. Biol. Cell 11, 103–116 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Koehler, C. M. et al. Tim18p, a new subunit of the TIM22 complex that mediates insertion of imported proteins into the yeast mitochondrial inner membrane. Mol. Cell. Biol. 20, 1187–1193 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pfanner, N., Tropschug, M. & Neupert, W. Mitochondrial protein import: nucleoside triphosphates are involved in conferring import-competence to precursors. Cell 49, 815–823 ( 1987).

    Article  CAS  PubMed  Google Scholar 

  82. Kübrich, M., Rassow, J., Voos, W., Pfanner, N. & Hönlinger, A. The import route of ADP/ATP carrier into mitochondria separates from the general import pathway of cleavable preproteins at the trans side of the outer membrane. J. Biol. Chem. 273, 16374–16381 (1998).

    Article  PubMed  Google Scholar 

  83. Koehler, C. M. et al. Tim9p, an essential partner subunit of Tim10p for the import of mitochondrial carrier proteins. EMBO J. 17, 6477–6486 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Adam, A. et al. Tim9, a new component of the TIM22–54 translocase in mitochondria . EMBO J. 18, 313–319 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Koehler, C. M. et al. Human deafness dystonia syndrome is a mitochondrial disease . Proc. Natl Acad. Sci. USA 96, 2141– 2146 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Leuenberger, D., Bally, N. A., Schatz, G. & Koehler, C. M. Different import pathways through the mitochondrial intermembrane space for inner membrane proteins. EMBO J. 18, 4816– 4822 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Diekert, K., Kispal, G., Guiard, B. & Lill, R. An internal targeting signal directing proteins into the mitochondrial intermembrane space. Proc. Natl Acad. Sci. USA 96, 11752– 11757 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Steger, H. F. et al. Import of ADP/ATP carrier into mitochondria: two receptors act in parallel. J. Cell Biol. 111, 2353 –2363 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Kellems, R. E., Allison, V. F. & Butow, R. A. Cytoplasmic type 80S ribosomes associated with yeast mitochondria. IV. Attachment of ribosomes to the outer membrane of isolated mitochondria. J. Cell. Biol. 65, 1– 14 (1975).

    Article  CAS  PubMed  Google Scholar 

  90. Fünfschilling, U. & Rospert, S. Nascent polypeptide-associated complex stimulates protein import into yeast mitochondria. Mol. Biol. Cell 10, 3289–3299 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Knox, C., Sass, E., Neupert, W. & Pines, O. Import into mitochondria, folding and retrograde movement of fumarase in yeast. J. Biol. Chem. 273, 25587–25593 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  92. Stan, T. et al. Recognition of preproteins by the isolated TOM complex of mitochondria . EMBO J. 19, 4895–4902 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Keil, P. & Pfanner, N. Insertion of MOM22 into the mitochondrial outer membrane strictly depends on surface receptors. FEBS Lett. 321, 197–200 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  94. Rapaport, D. & Neupert, W. Biogenesis of Tom40, core component of the TOM complex of mitochondria. J. Cell Biol. 146 , 321–331 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Model, K. et al. Multistep assembly of the protein import channel of the mitochondrial outer membrane. Nature Struct. Biol. 8, 361–370 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. He, S. & Fox, T. D. Membrane translocation of mitochondrially coded Cox2p: distinct requirements for export of N and C termini and dependence on the conserved protein Oxa1p. Mol. Biol. Cell 8, 1449–1460 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hell, K., Herrmann, J. M., Pratje, E., Neupert, W. & Stuart, R. A. Oxa1p, an essential component of the N-tail protein export machinery in mitochondria. Proc. Natl Acad. Sci. USA 95, 2250–2255 (1998).References 96 and 97 show that the mitochondrial inner membrane protein Oxa1 is required for export of a protein from the matrix. This also has important implications for the function of Oxa1 homologues in bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Samuelson, J. C. et al. YidC mediates membrane protein insertion in bacteria. Nature 406, 637–641 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  99. He, S. & Fox, T. D. Mutations affecting a yeast mitochondrial inner membrane protein, Pnt1p, block export of a mitochondrially synthesized fusion protein from the matrix. Mol. Cell. Biol. 19 , 6598–6607 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Moro, F., Sirrenberg, C., Schneider, H.-C., Neupert, W. & Brunner, M. The Tim17–23 preprotein translocase of mitochondria: composition and function in protein transport into the matrix . EMBO J. 18, 3667–3675 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASE LINKS

porins

mtHsp70

MPP

Hsp60

Tom20

Tom22

Hsp10

Hmi1

cytochrome c1

cytochrome b2

Imp1

Imp2

Tom70

Tom40

Tom5

Tom6

Tom7

Tim23

Tim17

Tim44

Mge1

MSF

Tim9

Tim10

Tim8

Tim12

Tim13

Tim22

Tim54

Tim18

NADH-cytochrome b5 reductase

fumarase

deafness dystonia syndrome

Oxa1

Pnt1

FURTHER INFORMATION

Pfanner lab

ENCYCLOPEDIA OF LIFE SCIENCES

Protein translocation across membranes

Mitochondria: structure and role in respiration

Glossary

TRANSLOCASE

A system catalysing the transfer of a substrate across a barrier.

MOLECULAR CHAPERONES

Proteins that assist the correct folding, assembly or disassembly of other proteins in vivo, but are not components of the final functional structures.

TOM

(Translocase of the outer mitochondrial membrane). A protein complex that recognizes nuclear-encoded mitochondrial preproteins and mediates their translocation across the membrane.

GIP

(General import pore). Pore of the mitochondrial outer membrane translocase that translocates virtually all nuclear-encoded mitochondrial proteins.

TIM

(Translocases of the inner mitochondrial membrane). Protein complexes in the inner membrane and intermembrane space of mitochondria that mediate transport of preproteins into and across the membrane.

HEAT-SHOCK PROTEINS

Heat-shock proteins are synthesized in larger amounts when cells have been exposed to a temperature that is higher than normal. Many heat-shock proteins function as molecular chaperones and are crucial for cellular functions also under non-stress conditions.

CHAPERONINS

A subclass of molecular chaperones, including the chaperonin 60 family and the chaperonin 10 family.

GIP COMPLEX

Stable core complex of the preprotein translocase of the outer mitochondrial membrane, consisting of the channel and several associated proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfanner, N., Geissler, A. Versatility of the mitochondrial protein import machinery. Nat Rev Mol Cell Biol 2, 339–349 (2001). https://doi.org/10.1038/35073006

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35073006

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing