Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites

Abstract

Rocks in the Earth's uppermost sub-oceanic mantle, known as abyssal peridotites, have lost variable but generally large amounts of basaltic melt, which subsequently forms the oceanic crust1,2. This process preferentially removes from the peridotite some major constituents such as aluminium, as well as trace elements that are incompatible in mantle minerals (that is, prefer to enter the basaltic melt), such as the rare-earth elements3,4. A quantitative understanding of this important differentiation process has been hampered by the lack of correlation generally observed between major- and trace-element depletions in such peridotites. Here we show that the heavy rare-earth elements in abyssal clinopyroxenes that are moderately incompatible are highly correlated with the Cr/(Cr + Al) ratios of coexisting spinels. This correlation deteriorates only for the most highly incompatible elements—probably owing to late metasomatic processes. Using electron- and ion-microprobe data from residual abyssal peridotites collected on the central Indian ridge, along with previously published data, we develop a quantitative melting indicator for mantle residues. This procedure should prove useful for relating partial melting in peridotites to geodynamic variables such as spreading rate and mantle temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mineral major- and trace-element systematics in residual abyssal peridotites.
Figure 2: Plot of r2 versus the cpx/liquid distribution coefficient.
Figure 3: Calculated degree of melting versus measured Cr# of spinel.

Similar content being viewed by others

References

  1. Hess, H. H. in Petrologic Studies (eds Engel, A. E. J., James, H. L. & Leonard, B. F.) 599–620 (Burlington Volume, Geological Society of America, Boulder, 1962).

    Google Scholar 

  2. Bonatti, E. Ultramafic rocks from the Mid-Atlantic ridge. Nature 219, 363–364 (1968).

    Article  ADS  CAS  Google Scholar 

  3. Johnson, K. T. M., Dick, H. J. B. & Shimizu, N. Melting in the oceanic upper mantle; an ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res. 95, 2661–2678 (1990).

    Article  ADS  Google Scholar 

  4. Johnson, K. T. M. & Dick, H. J. B. Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II fracture zone. J. Geophys. Res. 97, 9219–9241 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Dick, H. J. B. & Natland, J. H. Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. Proc. ODP Sci. Res. 147, 103–134 (1996).

    CAS  Google Scholar 

  6. Ross, K. & Elthon, D. Extreme incompatible trace-element depletion of diopside in residual mantle from south of the Kane F.Z. Proc. ODP Sci. Res. 153, 277–284 (1997).

    CAS  Google Scholar 

  7. Dick, H. J. B., Fisher, R. L. & Bryan, W. B. Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet. Sci. Lett. 69, 88–106 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Michael, P. J. & Bonatti, E. Peridotite composition from the North Atlantic; regional and tectonic variations and implications for partial melting. Earth Planet. Sci. Lett. 73, 91–104 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Bodinier, J. L., Vasseur, G., Vernieres, J., Dupuy, C. & Fabries, J. Mechanisms of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotite. J. Petrol. 31, 597–628 (1990).

    Article  ADS  Google Scholar 

  10. Kelemen, P. B., Shimizu, N. & Salters, V. J. M. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375, 747–753 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Seyler, M. & Bonatti, E. Regional-scale melt-rock interaction in lherzolitic mantle in the Romanche fracture zone (Atlantic Ocean). Earth Planet. Sci. Lett. 146, 273–287 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Suhr, G. Melt migration under oceanic ridges: inferences from reactive transport modelling of upper mantle hosted dunites. J. Petrol. 40, 575–599 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Pearce, J. A., Barker, P. F., Edwards, S. J., Parkinson, I. J. & Leat, P. T. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contrib. Mineral. Petrol. 139, 36–53 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Suhr, G., Seck, H. A., Shimizu, N., Günther, D. & Jenner, G. Infiltration of refractory melts into the lowermost oceanic crust: evidence from dunite- and gabbro-hosted clinopyroxenes in the Bay of Islands Ophiolite. Contrib. Mineral. Petrol. 131, 136–154 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Batanova, V. G., Suhr, G. & Sobolev, A. V. Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands Ophiolite, Newfoundland, Canada; ion probe study of clinopyroxenes. Geochim. Cosmochim. Acta 62, 853–866 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Baker, M. B. & Stolper, E. M. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim. Cosmochim. Acta 58, 2811–2827 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Niu, Y. & Hekinian, R. Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Nature 385, 326–329 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Bender, J. F., Langmuir, C. H. & Hanson, G. N. Petrogenesis of basalts from the Tamayo Region, East Pacific Rise. J. Petrol. 25, 231–254 (1984).

    Article  Google Scholar 

  19. Natland, J. H. & Melson, W. G. Composition of basaltic glasses from the East Pacific Rise and Siqueros fracture zone, near 9 degrees N. Init. Rep. DSDP 54, 705–724 (1980).

    CAS  Google Scholar 

  20. Ghose, I., Cannat, M. & Seyler, M. Transform fault effect on mantle melting in the MARK area (Mid-Atlantic Ridge south of the Kane transform). Geology 24, 1139–1142 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Hellebrand, E., Snow, J. E. & Mühe, R. Mantle melting beneath the Gakkel Ridge (Arctic Ocean): abyssal peridotite spinel compositions. Chem. Geol. (in the press).

  22. Klein, E. M. & Langmuir, C. H. Global correlations of ocean ridge basalts with axial depth and crustal thickness. J. Geophys. Res. 92, 8089–8115 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Dick, H. J. B. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. Geol. Soc. Spec. Publ. 42, 71–105 (1989).

    Article  ADS  Google Scholar 

  24. Anders, E. & Grevesse, N. Abundances of the elements: meteoric and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Hart, S. R. & Dunn, T. Experimental cpx/melt partitioning of 24 trace elements. Contrib. Mineral. Petrol. 113, 1–8 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Sobolev, A. V. & Shimizu, N. Extremely depleted magmas and oceanic mantle permeability. Dokl. Akad. Nauk 326, 354–360 (1992).

    CAS  Google Scholar 

  27. Shimizu, N., Semet, M. P. & Allegre, J. C. Geochemical applications of quantitative ion microprobe analysis. Geochim. Cosmochim. Acta 42, 1321–1334 (1978).

    Article  ADS  CAS  Google Scholar 

  28. Jochum, K. P. et al. The preparation and preliminary characterisation of eight geological MPI-DING standard reference glasses for in-situ microanalysis. Geostandards Newsl. 24, 87–133 (2000).

    Article  CAS  Google Scholar 

  29. Hellebrand, E., Snow, J. E. & Hofmann, A. W. Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J. Petrol. (submitted).

Download references

Acknowledgements

We thank R. Fisher who originally collected these samples, P. Hoppe and A. Besmehn for their assistance on the Mainz ion probe, N. Shimizu and G. Layne on the WHOI ion probe, and G. Suhr for letting us use his critical melting algorithm. Comments by G. Suhr, A. Sobolev and J. Lassiter helped to improve the manuscript. We thank E. Klein and P. Asimov for formal reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Hellebrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellebrand, E., Snow, J., Dick, H. et al. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410, 677–681 (2001). https://doi.org/10.1038/35070546

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35070546

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing