Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers

Abstract

Mechanisms for converting electrical energy into mechanical energy are essential for the design of nanoscale transducers, sensors, actuators, motors, pumps, artificial muscles, and medical microrobots. Nanometre-scale actuation has to date been mainly achieved by using the (linear) piezoelectric effect in certain classes of crystals (for example, quartz), and ‘smart’ ceramics such as lead zirconate titanate. But the strains achievable in these materials are small—less than 0.1 per cent—so several alternative materials and approaches have been considered. These include grafted polyglutamates1 (which have a performance comparable to quartz), silicone elastomers2 (passive material—the constriction results from the Coulomb attraction of the capacitor electrodes between which the material is sandwiched) and carbon nanotubes3 (which are slow). High and fast strains of up to 4 per cent within an electric field of 150 MV m-1 have been achieved by electrostriction (this means that the strain is proportional to the square of the applied electric field) in an electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer4. Here we report a material that shows a further increase in electrostriction by two orders of magnitude: ultrathin (less than 100 nanometres) ferroelectric liquid-crystalline elastomer films that exhibit 4 per cent strain at only 1.5 MV m-1. This giant electrostriction was obtained by combining the properties of ferroelectric liquid crystals with those of a polymer network. We expect that these results, which can be completely understood on a molecular level, will open new perspectives for applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The electroclinic effect in ferroelectric liquid crystalline elastomers (FLCEs).
Figure 2: Optical geometries.
Figure 3: Electromechanical responses in FLCEs.

Similar content being viewed by others

References

  1. Jaworek, T., Neher, D., Wegner, G., Wieringa, R. H. & Schouten, A. J. Electromechanical properties of an ultrathin layer of directionally aligned helical polypeptides. Science 279, 57–60 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Pelrine, R., Kornbluh, R., Pei, Q. & Joseph, J. High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000).

    Article  ADS  CAS  Google Scholar 

  3. Baughman, R. H. et al. Carbon nanotube actuators. Science 284, 1340–1344 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Zhang, Q. M., Bharti, V. & Zhao, X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101–2104 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Zentel, R. Liquid crystalline elastomers. Angew. Chem. Int. Edn Engl. 28, 1407–1415 (1989).

    Article  Google Scholar 

  6. Wong, G. C. L. et al. Induced long range order in crosslinked ‘one-dimensional’ stacks of fluid monolayers. Nature 389, 576–579 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Lagerwall, S. T. Ferroelectric and Antiferroelectric Liquid Crystals (Wiley-VCH, Weinheim, 1999).

    Book  Google Scholar 

  8. Terentjev, E. M. & Warner, M. Continuum theory of ferroelectric smectic C* elastomers. J. Phys. II France 4, 849–858 (1994).

    Article  CAS  Google Scholar 

  9. Clark, N. A. & Lagerwall, S. T. Submicrosecond bistable electro-optic switching in liquid crystals. Appl. Phys. Lett. 36, 899–901 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Jákli, A. & Saupe, A. Field-induced thickness change of ferroelectric liquid crystal films. Phys. Rev. E 53, R5580–R5583 (1996).

    Article  ADS  Google Scholar 

  11. Garoff, S. & Meyer, R. B. Electroclinic effect at the A-C phase change in a chiral liquid crystal*. Phys. Rev. Lett. 38, 848–851 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Rappaport, A. G. et al. X-ray observation of electroclinic layer constriction and rearrangement in a chiral smectic-A liquid crystal. Appl. Phys. Lett. 67, 362–364 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Gebhard, E. & Zentel, R. Ferroelectric liquid crystalline elastomers. Macromol. Chem. Phys. 201, 902–910 (2000).

    Article  CAS  Google Scholar 

  14. Schüring, H., Stannarius, R., Tolksdorf, C. & Zentel, R. Liquid crystal elastomer balloons. Macromolecules (submitted).

  15. Mach, P., Huang, C. C. & Nguyen, H. T. Dramatic effect of single-atom replacement on the surface tension of liquid-crystal compounds. Phys. Rev. Lett. 80, 732–735 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Johnson, P. M., Pankratz, S., Mach, P., Nguyen, H. T. & Huang, C. C. Optical reflectivity and ellipsometry studies of the Sm-Cα* phase. Phys. Rev. Lett. 83, 4073–4076 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Zhao, J., Zhang, Q. M., Kim, N. & Shrout, T. Electromechanical properties of relaxor ferroelectric lead magnesium niobate-lead magnesium titanate ceramics. Jpn J. Appl. Phys 34, 5658–5663 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Poths, H., Anderson, G., Skarp, K. & Zentel, R. Fast electroclinic switching in a ferroelectric LC Polysiloxane. Adv. Mater. 4, 792–794 (1992).

    Article  CAS  Google Scholar 

  19. Kremer, F. Electromechanical and/or mechanoelectrical converter. German Patent No. 196 36 909 (1998).

  20. Semmler, K. & Finkelmann, H. Mechanical field orientation of chiral smectic C-polymer networks. Macromol. Chem. Phys. 196, 3197–3205 (1995).

    Article  CAS  Google Scholar 

  21. Lehmann, W. et al. The electromechanical effect in mechanically oriented SC*-elastomers examined by means of an ultra-stable Michelson interferometer. Ferroelectrics 208–209, 373–383 (1998).

    Article  Google Scholar 

  22. Lehmann, W. et al. Direct and inverse electromechanical effect in ferroelectric liquid crystalline elastomers. J. Appl. Phys. 86, 1647–1652 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Kremer, F. et al. Piezoelectricity in ferroelectric liquid crystalline elastomers. Polym. Adv. Technol. 9, 672–677 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Stannarius and D. Neher for discussions, and the “Innovationskolleg Phänomene an den Miniaturisierungsgrenzen” at the University of Leipzig for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Kremer.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmann, W., Skupin, H., Tolksdorf, C. et al. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 410, 447–450 (2001). https://doi.org/10.1038/35068522

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35068522

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing