Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Defining brain wiring patterns and mechanisms through gene trapping in mice

Abstract

The search to understand the mechanisms regulating brain wiring has relied on biochemical purification approaches in vertebrates and genetic approaches in invertebrates to identify molecular cues and receptors for axon guidance. Here we describe a phenotype-based gene-trap screen in mice designed for the large-scale identification of genes controlling the formation of the trillions of connections in the mammalian brain. The method incorporates an axonal marker, which helps to identify cell-autonomous mechanisms in axon guidance, and has generated a resource of mouse lines with striking patterns of axonal labelling, which facilitates analysis of the normal wiring diagram of the brain. Studies of two of these mouse lines have identified an in vivo guidance function for a vertebrate transmembrane semaphorin, Sema6A, and have helped re-evaluate that of the Eph receptor EphA4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The PLAP secretory trap vector and flow of screen.
Figure 2: A survey of axonal populations labelled by PLAP.
Figure 3: A sample of new predicted transmembrane proteins and their expression.
Figure 4: Thalamocortical axon misrouting in Sema6A mutants.
Figure 5: Axon guidance defects in EphA4 mutants.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    ADS  CAS  PubMed  Google Scholar 

  2. Ebens, A. et al. Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron 17, 1157–1172 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Raper, J. A. Semaphorins and their receptors in vertebrates and invertebrates. Curr. Opin. Neurobiol. 10, 88–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Hrabe de Angelis, M. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet. 25, 444–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Nolan, P. M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet. 25, 440–443 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Kasarskis, A., Manova, K. & Anderson, K. V. A phenotype-based screen for embryonic lethal mutations in the mouse. Proc. Natl Acad. Sci. USA 95, 7485–7490 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martin, K. A. et al. Mutations disrupting neuronal connectivity in the Drosophila visual system. Neuron 14, 229–240 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Giger, R. J. et al. Neuropilin-2 is required in vivo for selective axon guidance responses to secreted semaphorins. Neuron 25, 29–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, H. et al. Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 25, 43–56 (2000).

    Article  PubMed  Google Scholar 

  10. Brennan, J. & Skarnes, W. C. Gene trapping in mouse embryonic stem cells. Methods Mol. Biol. 97, 123–138 (1999).

    CAS  PubMed  Google Scholar 

  11. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Skarnes, W. C., Moss, J. E., Hurtley, S. M. & Beddington, R. S. Capturing genes encoding membrane and secreted proteins important for mouse development. Proc. Natl Acad. Sci. USA 92, 6592–6596 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mitchell, K. J. et al. Functional analysis of secreted and transmembrane proteins in mouse development. Nature Genet. (submitted).

  14. Frohman, M. A., Dush, M. K. & Martin, G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl Acad. Sci. USA 85, 8998–9002 (1988).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Townley, D. J., Avery, B. J., Rosen, B. & Skarnes, W. C. Rapid sequence analysis of gene trap integrations to generate a resource of insertional mutations in mice. Genome Res. 7, 293–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Mountford, P. S. & Smith, A. G. Internal ribosome entry sites and dicistronic RNAs in mammalian transgenesis. Trends Genet. 11, 179–184 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gustincich, S., Feigenspan, A., Wu, D. K., Koopman, L. J. & Raviola, E. Control of dopamine release in the retina: a transgenic approach to neural networks. Neuron 18, 723–736 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Fields-Berry, S. C., Halliday, A. L. & Cepko, C. L. A recombinant retrovirus encoding alkaline phosphatase confirms clonal boundary assignment in lineage analysis of murine retina. Proc. Natl Acad. Sci. USA 89, 693–697 (1992).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sagane, K., Yamazaki, K., Mizui, Y. & Tanaka, I. Cloning and chromosomal mapping of mouse ADAM11, ADAM22 and ADAM23. Gene 236, 79–86 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, L. et al. Cloning and expression of a novel murine semaphorin with structural similarity to insect semaphorin I. Mol. Cell. Neurosci. 9, 26–41 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Kikuchi, K. et al. Cloning and characterization of a novel class VI semaphorin, semaphorin Y. Mol. Cell. Neurosci. 13, 9–23 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, X. M. et al. The transmembrane protein semaphorin 6A repels embryonic sympathetic axons. J. Neurosci. 20, 2638–2648 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klostermann, A., Lutz, B., Gertler, F. & Behl, C. The orthologous human and murine semaphorin 6A-1 proteins (SEMA6A-1/Sema6A-1) bind to the Enabled/Vasodilator-stimulated Phosphoprotein-like Protein (EVL) via a novel carboxyterminal Zyxin-like domain. J. Biol. Chem. 275, 39467–39653 (2000).

    Article  Google Scholar 

  25. Eckhardt, F. et al. A novel transmembrane semaphorin can bind c-src. Mol. Cell. Neurosci. 9, 409–419 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Auladell, C., Pérez-Sust, P., Supèr, H. & Soriano, E. The early development of thalamocortical and corticothalamic projections in the mouse. Anat. Embryol. 201, 169–179 (2000).

    Article  CAS  Google Scholar 

  27. Molnár, Z., Adams, R. & Blakemore, C. Mechanisms underlying the early establishment of thalamocortical connections in the rat. J. Neurosci. 18, 5723–5745 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yu, H. H., Araj, H. H., Ralls, S. A. & Kolodkin, A. L. The transmembrane Semaphorin Sema I is required in Drosophila for embryonic motor and CNS axon guidance. Neuron 20, 207–220 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Dottori, M. et al. EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc. Natl Acad. Sci. USA 95, 13248–13253 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Helmbacher, F., Schneider-Maunoury, S., Topilko, P., Tiret, L. & Charnay, P. Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons. Development 127, 3313–3324 (2000).

    CAS  PubMed  Google Scholar 

  31. Henkemeyer, M. et al. Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86, 35–46 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Holland, S. J. et al. Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383, 722–725 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Kullander, K. et al. Kinase-dependent and kinase independent functions of EphA4 receptors in major axon tract formation in vivo. Neuron 29, 73–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, F., Nemes, A., Mendelsohn, M. & Axel, R. Odorant receptors govern the formation of a precise topographic map. Cell 93, 47–60 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Tsuchida, T. et al. Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957–970 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Gunning, P., Leavitt, J., Muscat, G., Ng, S. Y. & Kedes, L. A human beta-actin expression vector system directs high-level accumulation of antisense transcripts. Proc. Natl Acad. Sci. USA 84, 4831–4835 (1987).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. St Croix, B. et al. Genes expressed in human tumor endothelium. Science 289, 1197–1202 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Klein and colleagues for helpful discussions and sharing their results on EphA4 mutants; S. McConnell, A. Chédotal, J. Rubenstein and members of the Rubenstein laboratory for helpful discussions on mouse neuroanatomy; A. Smith, P. Mombaerts and T. Vogt for reagents; and P. Tate, P. Wakenight and J. Mak for technical support. Funding for this project was provided by grants to M.T.L. and W.C.S. from the NIMH, and to W.C.S. from the NICHD. M.T.L. was also supported by a 1999 Sandler Award in Basic Sciences, the Howard Hughes Medical Institute, and the HHMI Research Resources Program grant to the UCSF School of Medicine. W.C.S. was a 1998 Searle Scholar. P.A.L. is a Howard Hughes Medical Institute Fellow of the Life Sciences Research Foundation, K.J.M. was supported by a fellowship from the Jane Coffin Childs Memorial Fund, and L.V.G. by a fellowship from the Helen Hay Whitney Foundation. X.L is a postdoctoral associate and M.T.L. an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Tessier-Lavigne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leighton, P., Mitchell, K., Goodrich, L. et al. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410, 174–179 (2001). https://doi.org/10.1038/35065539

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065539

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing