Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence

Abstract

The p16INK4a cyclin-dependent kinase inhibitor1 is implicated in replicative senescence, the state of permanent growth arrest provoked by cumulative cell divisions or as a response to constitutive Ras–Raf–MEK signalling in somatic cells2,3,4,5,6,7,8. Some contribution to senescence presumably underlies the importance of p16INK4a as a tumour suppressor9 but the mechanisms regulating its expression in these different contexts remain unknown. Here we demonstrate a role for the Ets1 and Ets2 transcription factors10 based on their ability to activate the p16INK4a promoter through an ETS-binding site and their patterns of expression during the lifespan of human diploid fibroblasts. The induction of p16INK4a by Ets2, which is abundant in young human diploid fibroblasts, is potentiated by signalling through the Ras–Raf–MEK kinase cascade and inhibited by a direct interaction with the helix–loop–helix protein Id1 (ref. 11). In senescent cells, where the Ets2 levels and MEK signalling decline, the marked increase in p16INK4a expression is consistent with the reciprocal reduction of Id1 and accumulation of Ets1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modulation of p16INK4a promoter activity.
Figure 2: Effects of Ets proteins on endogenous p16INK4a.
Figure 3: Id1 interacts with Ets2 and blocks its effects on the p16INK4a promoter.
Figure 4: Expression of Id1 and Ets proteins and their effects on endogenous p16INK4a levels.

Similar content being viewed by others

References

  1. Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell cycle control causing specific inhibition of cyclinD/CDK4. Nature 366, 704–707 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Alcorta, D. A. et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence. Proc. Natl Acad. Sci. USA 93, 13742–13747 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Hara, E. et al. Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol. Cell. Biol. 16, 859–867 (1996).

    Article  CAS  Google Scholar 

  4. Loughran, O. et al. Association of CDKN2A/p16INK4a with human head and neck keratinocyte replicative senescence: relationship of dysfunction to immortality and neoplasia. Oncogene 13, 561–568 (1996).

    CAS  PubMed  Google Scholar 

  5. Reznikoff, C. A. et al. Elevated p16 at senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not E7, transformed human uroepithelial cells. Cancer Res. 56, 2886–2890 (1996).

    CAS  PubMed  Google Scholar 

  6. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

  7. Lin, A. W. et al. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12, 3008–3019 (1998).

    Article  CAS  Google Scholar 

  8. Zhu, J., Woods, D., McMahon, M. & Bishop, J. M. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12, 2997–3007 (1998).

    Article  CAS  Google Scholar 

  9. Ruas, M. & Peters, G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta 1378, 115–117 (1998).

    Google Scholar 

  10. Graves, B. J. & Petersen, J. M. Specificity within the ets family of transcription factors. Adv. Cancer Res. 75, 1–55 (1998).

    Article  CAS  Google Scholar 

  11. Benezra, R., Davis, R. L., Lockshon, D., Turner, D. L. & Weintraub, H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61, 49–59 (1990).

    Article  CAS  Google Scholar 

  12. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  Google Scholar 

  13. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  Google Scholar 

  14. Lundberg, A. S., Hahn, W. C., Gupta, P. & Weinberg, R. A. Genes involved in senescence and immortalization. Curr. Opin. Cell Biol. 12, 705–709 (2000).

    Article  CAS  Google Scholar 

  15. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Sedivy, J. M. Can ends justify the means?: telomeres and the mechanisms of replicative senescence and immortalization in mammalian cells. Proc. Natl Acad. Sci. USA 95, 9078–9081 (1998).

    Article  ADS  CAS  Google Scholar 

  17. McConnell, B. B., Starborg, M., Brookes, S. & Peters, G. Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr. Biol. 8, 351–354 (1998).

    Article  CAS  Google Scholar 

  18. Foos, G., Garcia-Ramirez, J. J., Galang, C. K. & Hauser, C. A. Elevated expression of Ets2 or distinct portions of Ets2 can reverse ras-mediated cellular transformation. J. Biol. Chem. 273, 18871–18880 (1998).

    Article  CAS  Google Scholar 

  19. Dimri, G. P. et al. A novel biomarker identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Yates, P. R., Atherton, G. T., Deed, R. W., Norton, J. D. & Sharrocks, A. D. Id helix-loop-helix proteins inhibit nucleoprotein complex formation by the TCF ETS-domain transcription factors. EMBO J. 18, 968–976 (1999).

    Article  CAS  Google Scholar 

  21. Massari, M. E. & Murre, C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20, 429–440 (2000).

    Article  CAS  Google Scholar 

  22. Hara, E. et al. Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts. J. Biol. Chem. 269, 2139–2145 (1994).

    CAS  PubMed  Google Scholar 

  23. Lyden, D. et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401, 670–677 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Hara, E. et al. The helix-loop-helix protein Id-1 and a retinoblastoma protein binding mutant of SV40 T antigen synergize to reactivate DNA synthesis in senescent human fibroblasts. Dev. Genet. 18, 161–172 (1996).

    Article  CAS  Google Scholar 

  25. Alani, R. M. et al. Immortalization of primary human keratinocytes by the helix-loop-helix protein, Id-1. Proc. Natl Acad. Sci. USA 96, 9637–9641 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Jacobs, J. J. L., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Takahashi, Y., Rayman, J. B. & Dynlacht, B. D. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev. 14, 804–816 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sugimoto, M. et al. Regulation of CDK4 activity by a novel CDK4-binding protein, p34SEI-1. Genes Dev. 13, 3027–3033 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. A. Hauser, K. E. Boulukos, N. G. Ahn, Y. de Launoit, Y. Nagamine and J. Ghysdael for providing useful materials. We are also grateful to N. Jones, R. Treisman, J. Campisi, I. Palmero and M. Serrano for helpful discussions, and to M. Hughes and J. Barry for help in FACS. We also thank T. Tanaka for his useful suggestion in ChIP assay and S. Bagley and T. D. Allen for help in using the microscope. This work was supported by the Cancer Research Campaign, Imperial Cancer Research Fund and Nihon Schering KK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Hara.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohtani, N., Zebedee, Z., Huot, T. et al. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409, 1067–1070 (2001). https://doi.org/10.1038/35059131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35059131

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing