Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Upper-mantle dynamics revealed by helium isotope variations along the southeast Indian ridge

Abstract

Helium isotope variations in igneous rocks are important for relating isotopic heterogeneity to convective mixing in the Earth's mantle. High 3He/4He ratios at many ocean islands, along with lower and relatively uniform values in mid-ocean-ridge basalts (MORBs), are thought to result from a well mixed upper-mantle source for MORB and a distinct deeper-mantle source for ocean island basalts1. At finer scales, 3He/4He variations along mid-ocean ridges have been related to underlying mantle heterogeneity2,3, but relationships between the scales of geochemical segmentation and mantle convection remain enigmatic. Here we present helium isotope data for MORB glasses recovered along 5,800 km of the southeast Indian ridge, and develop an approach to quantitatively relate spatial variations in geochemical and geophysical parameters at the Earth's surface. A point-to-point correlation analysis reveals structure in the helium isotope data at length scales of 150 and 400 km that appears to be related to secondary convection in the underlying mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location map of Indian Ocean features.
Figure 2: 3He/4He, Fe8 and axial depth versus distance along the SEIR.
Figure 3: Spatial correlogram for 3He/4He variations along the SEIR.

Similar content being viewed by others

References

  1. Lupton, J. E. Terrestrial inert gases: isotope tracer studies and clues to primordial components in the mantle. Annu. Rev. Earth Planet. Sci. 11, 371–414 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Lupton, J. E., Graham, D. W., Delaney, J. R. & Johnson, H. P. Helium isotope variations in Juan de Fuca Ridge basalts. Geophys. Res. Lett. 20, 1851–1854 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Graham, D. W., Johnson, K. T. M., Priebe, L. D. & Lupton, J. E. Hotspot-ridge interaction along the Southeast Indian Ridge near Amsterdam and St. Paul Islands: helium isotope evidence. Earth Planet. Sci. Lett. 167, 297–310 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Sempéré, J.-C., Palmer, J., Christie, D., Morgan, J. P. & Shor, A. Australian-Antarctic Discordance. Geology 19, 429–432 (1991).

    Article  ADS  Google Scholar 

  5. Sempéré, J.-C., Cochran, J. R. & Team, S. S. The Southeast Indian Ridge between 88°E and 118°E: variations in crustal accretion at constant spreading rate. J. Geophys. Res. 102, 15489–15505 (1997).

    Article  ADS  Google Scholar 

  6. Klein, E. M., Langmuir, C. H. & Staudigel, H. Geochemistry of basalts from the South East Indian Ridge, 115°E-138°E. J. Geophys. Res. 96, 2089–2107 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Pyle, D. G. Geochemistry of mid-ocean ridge basalt within and surrounding the Australian Antarctic Discordance. PhD thesis, Oregon State Univ. (1994).

    Google Scholar 

  8. Douglas Priebe, L. M. Geochemical and petrogenetic effects of the interaction of the Southeast Indian Ridge and the Amsterdam-St. Paul hotspot. MS thesis, Oregon State Univ. (1998).

    Google Scholar 

  9. Sours-Page, R. Magmatic processes at mid-ocean ridges: evidence from lavas and melt inclusions from the Southeast Indian Ridge, East Pacific Rise and Juan de Fuca Ridge. PhD thesis, Oregon State Univ. (2000).

    Google Scholar 

  10. Graham, D., Lupton, J., Albarède, F. & Condomines, M. Extreme temporal homogeneity of helium isotopes at Piton de la Fournaise, Réunion Island. Nature 347, 545–548 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Klein, E. M. & Langmuir, C. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 92, 8089–8115 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Sturm, M. E., Klein, E. M., Graham, D. W. & Karsten, J. Age constraints on crustal recycling to the mantle beneath the southern Chile Ridge: He-Pb-Sr-Nd isotope systematics. J. Geophys. Res. 104, 5097–5114 (1999).

    Article  ADS  Google Scholar 

  13. Allègre, C. J. & Turcotte, D. L. Implications of a two-component marble-cake mantle. Nature 323, 123–127 (1986).

    Article  ADS  Google Scholar 

  14. Hirschmann, M. M. & Stolper, E. M. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib. Mineral. Petrol. 124, 185–208 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Mahoney, J. J. et al. Isotope and trace element characteristics of a super-fast spreading ridge: East Pacific Rise, 13-23°S. Earth Planet. Sci. Lett. 121, 173–193 (1993).

    Article  ADS  Google Scholar 

  16. Small, C., Cochran, J. R., Sempéré, J.-C. & Christie, D. M. The structure and segmentation of the Southeast Indian Ridge. Mar. Geol. 161, 1–12 (1999).

    Article  ADS  Google Scholar 

  17. Oldenburg, C. M., Spera, F. J., Yuen, D. A. & Sewell, G. Dynamic mixing in magma bodies: theory, simulations, and implications. J. Geophys. Res. 94, 9215–9236 (1989).

    Article  ADS  Google Scholar 

  18. Danckwerts, P. V. The definition and measurement of some characteristics of mixtures. Appl. Sci. Res. 3, 279–296 (1952).

    Article  Google Scholar 

  19. Taylor, G. I. Statistical theory of turbulence: Parts 1-4. Proc. R. Soc. Lond. A 151, 421–478 (1935).

    Article  ADS  Google Scholar 

  20. Gurnis, M. Stirring and mixing in the mantle by plate-scale flow: large persistent blobs and long tendrils coexist. Geophys. Res. Lett. 13, 1474–1477 (1986).

    Article  ADS  Google Scholar 

  21. Anderson, D. L. The scales of mantle convection. Tectonophysics 284, 1–17 (1998).

    Article  ADS  Google Scholar 

  22. Haxby, W. F. & Weissel, J. K. Evidence for small-scale convection from Seasat altimeter data. J. Geophys. Res. 91, 3507–3520 (1986).

    Article  ADS  Google Scholar 

  23. Baudry, N. & Kroenke, L. Intermediate-wavelength (400-600 km), South Pacific geoidal undulations: their relationship to linear volcanic chains. Earth Planet. Sci. Lett. 102, 430–443 (1991).

    Article  ADS  Google Scholar 

  24. Duncan, R. A. & Storey, M. in Synthesis of Results from Scientific Drilling in the Indian Ocean (eds Duncan, R. A., Rea, D. K., Kidd, R. B., von Rad, U. & Weissel, J. K.) 91–103 (Geophysical Monograph 70, American Geophysical Union, Washington DC, 1992).

    Book  Google Scholar 

  25. van Keken, P. E. & Gable, C. W. The interaction of a plume with a rheological boundary: a comparison between two- and three-dimensional models. J. Geophys. Res. 100, 20291–20302 (1995).

    Article  ADS  Google Scholar 

  26. Richter, F. M. & Ribe, N. M. On the importance of advection in determining the local isotopic composition of the mantle. Earth Planet. Sci. Lett. 43, 212–222 (1979).

    Article  ADS  CAS  Google Scholar 

  27. Camassa, R. & Wiggins, S. Transport of a passive tracer in time-dependent Rayleigh-Bénard convection. Physica D 51, 472–481 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  28. Kellogg, L., Hager, B. & van der Hilst, R. Compositional stratification in the deep mantle. Science 283, 1881–1884 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Gripp, A. E. & Gordon, R. G. Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model. Geophys. Res. Lett. 17, 1109–1112 (1990).

    Article  ADS  Google Scholar 

  30. Graham, D., Lupton, J., Klein, E., Christie, D. & Pyle, D. in Proc. 7th Int. Conf. on Geochronology, Cosmochronology and Isotope Geology, Vol. 27, 41 (Geological Society of Australia, Sydney, 1990).

    Google Scholar 

Download references

Acknowledgements

We thank G. Brown for computer code development, and M. Fisk, B. Hanan, G. Ito, J. Mahoney and D. Pyle for discussions. This work was supported by the NSF, the US DOE, and the NOAA Vents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. Graham.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, D., Lupton, J., Spera, F. et al. Upper-mantle dynamics revealed by helium isotope variations along the southeast Indian ridge. Nature 409, 701–703 (2001). https://doi.org/10.1038/35055529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35055529

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing