Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite

Abstract

Observations of martian surface morphology have been used to argue that an ancient ocean once existed on Mars1. It has been thought that significant quantities of such water could have been supplied to the martian surface through volcanic outgassing, but this suggestion is contradicted by the low magmatic water content that is generally inferred from chemical analyses of igneous martian meteorites2. Here, however, we report the distributions of trace elements within pyroxenes of the Shergotty meteorite—a basalt body ejected 175 million years ago from Mars3—as well as hydrous and anhydrous crystallization experiments that, together, imply that water contents of pre-eruptive magma on Mars could have been up to 1.8%. We found that in the Shergotty meteorite, the inner cores of pyroxene minerals (which formed at depth in the martian crust) are enriched in soluble trace elements when compared to the outer rims (which crystallized on or near to the martian surface). This implies that water was present in pyroxenes at depth but was largely lost as pyroxenes were carried to the surface during magma ascent. We conclude that ascending magmas possibly delivered significant quantities of water to the martian surface in recent times, reconciling geologic and petrologic constraints on the outgassing history of Mars.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measured abundances of B (a) and Li (b), and the measured Ce/Y ratio (c), relative to other incompatible elements (Be and Ti), in Shergotty pyroxenes.
Figure 2: Comparison of the average compositions of Shergotty pigeonite and augite cores with experimental pyroxenes.
Figure 3

Similar content being viewed by others

References

  1. Head, J. W. et al. Possible ancient oceans on Mars: Evidence from Mars Orbiter laser altimeter data. Science 286, 2134– 2137 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Waenke, H. & Dreibus, G. Chemistry and accretion history of Mars. Phil. Trans. R. Soc. Lond. A 349, 285–293 (1994).

    Article  ADS  CAS  Google Scholar 

  3. McSween, H. Y. Jr What we have learned about Mars from SNC meteorites. Meteoritics 29, 757–779 ( 1994).

    Article  ADS  CAS  Google Scholar 

  4. Karlsson, H. R., Clayton, R. N., Gibson, E. K. Jr & Mayeda, T. K. Water in SNC meteorites: Evidence for a martian hydrosphere. Science 255, 1409–1411 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Stolper, E. M. & McSween, H. Y. Jr Petrology and origin of the shergottite meteorites. Geochim. Cosmochim. Acta 43, 1475–1498 ( 1979).

    Article  ADS  CAS  Google Scholar 

  6. McSween, H. Y. Jr & Harvey, R. P. Outgassed water on Mars: Constraints from melt inclusions in SNC meteorites. Science 259, 1890–1892 ( 1993).

    Article  ADS  CAS  Google Scholar 

  7. Watson, L. L., Hutcheon, I. D., Epstein, S. & Stolper, E. M. Water on Mars: Clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites. Science 265, 86 –90 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Mysen, B. O., Virgo, D., Popp, R. K. & Bertka, C. M. The role of H2O in martian magmatic systems. Am. Mineral. 83, 942–946 (1998).

    Article  ADS  CAS  Google Scholar 

  9. King, P. L., Hervig, R. L., Holloway, J. R., Vennemann, T. W. & Righter, K. Oxy-substitution and dehydrogenation in mantle-derived amphibole megacrysts. Geochim. Cosmochim. Acta 63, 3635–3651 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Seyfried, W. E. Jr, Janecky, D. R. & Mottle, M. J. Alteration of the oceanic crust: implications for geochemical cycles of lithium and boron. Geochim. Cosmochim. Acta 48, 557–569 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Brennan, J. M., Ryerson, F. J. & Shaw, H. F. The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: Experiments and models. Geochim. Cosmochim. Acta 62, 33337 –3347 (1998).

    ADS  Google Scholar 

  12. Neal, C. R. & Taylor, L. A. A negative Ce anomaly in a peridotite xenolith: Evidence for crustal recycling into the mantle or mantle metasomatism? Geochim. Cosmochim. Acta 53, 1035– 1040 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Hale, V. P. S., McSween, H. Y. Jr & McKay, G. Re-evaluation of intercumulus liquid composition and oxidation state for the Shergotty meteorite. Geochim. Cosmochim. Acta 63, 1459–1470 (1999).

    Article  ADS  CAS  Google Scholar 

  14. McKay, G., Mikouchi, T., Le, L., Schwandt, C. & Hashimoto, M. The Shergotty paradox: An experimental perspective on intercumulus melt compositions. Lunar Planet. Sci. [CD-ROM] 31 (2000).

  15. McCoy, T. J. & Lofgren, G. E. Crystallization of the Zagami shergottite: An experimental study. Earth Planet. Sci. Lett. 173, 397–411 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Anderson, D. J., Lindsley, D. H. & Davidson, P. M. QUILF: A Pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz. Comput. Geosci. 19, 1333–1350 ( 1993).

    Article  ADS  Google Scholar 

  17. Hamilton, D. L., Burnham, C. W. & Osborn, E. F. The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas. J. Petrol. 5, 21–39 (1964 ).

    Article  ADS  CAS  Google Scholar 

  18. Sisson, T. W. & Grove, T. L. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib. Mineral. Petrol. 113, 143–166 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Moore, G., Venneman, T. & Carmichael, I. S. E. An empirical model for the solubility of H 2O in magmas to 3 kilobars. Am. Mineral. 83, 36–42 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Johnson, M. C., Rutherford, M. J. & Hess, P. C. Chassigny petrogenesis: Melt compositions, intensive parameters, and water contents of martian(?) magmas. Geochim. Cosmochim. Acta 55, 349–366 ( 1991).

    Article  ADS  CAS  Google Scholar 

  21. Minitti, M. M. & Rutherford, M. J. Genesis of the Mars Pathfinder “sulfur-free” rock from SNC parental liquids. Geochim. Cosmochim. Acta 64, 2535– 2547 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Wilson, L. & Head, J. W. Ascent and eruption of basaltic magma on the Earth and Moon. J. Geophys. Res. 86, 2971–3001 (1981).

    Article  ADS  Google Scholar 

  23. Mouginis-Mark, P. J., Wilson, L. & Zuber, M. T. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 424–452 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  24. Newman, S., Epstein, S. & Stolper, E. Water, carbon dioxide, and hydrogen isotopes in glasses from the ca. 1340 A. D. eruption of the Mono Craters, California: Constraints on degassing phenomena and initial volatile content. J. Volcanol. Geotherm. Res. 35, 75–96 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Mustard, J. F., Murchie, S., Erard, S. & Sunshine, J. M. In situ compositions of Martian volcanics: Implications for the mantle. J. Geophys. Res. 102, 25605–25615 ( 1997).

    Article  ADS  CAS  Google Scholar 

  26. Bandfield, J. L., Hamilton, V. E. & Christensen, P. R. A global view of martian surface compositions from MGS-TES. Science 287, 1626– 1630 (2000).

    Article  ADS  CAS  Google Scholar 

  27. Lodders, K. & Fegley, B. Jr An oxygen isotope model for the composition of Mars. Icarus 126, 373– 394 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Jones, J. H. Isotopic relationships among the shergottites, the nakhlites and Chassigny. Proc. Lunar Planet. Sci. Conf. 19, 465– 474 (1989).

    ADS  Google Scholar 

  29. Longhi, J. Complex magmatic processes on Mars: Inferences from the SNC meteorites. Proc. Lunar Planet. Sci. Conf. 21, 695– 709 (1991).

    ADS  Google Scholar 

  30. Herd, C. D. K. & Papike, J. J. Oxygen fugacity of the martian basalts from analysis of iron-titanium oxides: Implications for mantle-crust interaction on Mars. Met. Planet. Sci. 35, A70 (2000).

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Y. McSween Jr.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

McSween, H., Grove, T., Lentz, R. et al. Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature 409, 487–490 (2001). https://doi.org/10.1038/35054011

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35054011

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing