Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial genome analysis: insights into virulence, host adaptation and evolution

Abstract

Genome analysis of microbial pathogens has provided unique insights into their virulence, host adaptation and evolution. Common themes have emerged, including lateral gene transfer among enteric pathogens, genome decay among obligate intracellular pathogens and antigenic variation among mucosal pathogens. The advent of post-genomic approaches and the sequencing of the human genome will enable scientists to investigate the complex and dynamic interplay between host and pathogen. This wealth of information will catalyse the development of new intervention strategies to reduce the burden of microbial-related disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Naturally occurring structural variation in Campylobacter jejuni lipo-oligosaccharide (LOS) mediated by the intragenic homopolymeric G tract of the wlaN contingency gene16.
Figure 2: Signature-tagged mutagenesis — high-throughput analysis of in vivo-expressed genes.
Figure 3: Principles of transcriptome analysis using a DNA microarray.

Similar content being viewed by others

References

  1. Blaser, M. J. Linking Helicobacter pylori to gastric cancer. Nature Med. 6, 376–377 ( 2000).

    Article  CAS  Google Scholar 

  2. Rosenfeld, M. E. et al. Chlamydia, inflammation, and atherogenesis. J. Infect. Dis. 181, S492–S497 (2000).

    Article  CAS  Google Scholar 

  3. Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496– 512 (1995).First sequencing of a free-living organism and first description of use of the shotgun strategy for whole genome sequencing.

    Article  CAS  Google Scholar 

  4. Tomb, J. F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539– 547 (1997).

    Article  CAS  Google Scholar 

  5. Alm, R. A. et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176–180 (1999). Sequence determination of a second strain within a species. Identification of a genome plasticity zone.

    Article  Google Scholar 

  6. Tettelin, H. et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809 –1815 (2000).

    Article  CAS  Google Scholar 

  7. Parkhill, J. et al. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404, 502– 506 (2000).

    Article  CAS  Google Scholar 

  8. Stephens, R. S. et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759 (1998).

    Article  CAS  Google Scholar 

  9. Read, T. D. et al. Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res. 28 , 1397–1406 (2000).

    Article  CAS  Google Scholar 

  10. Glaser, P. & Cossart, P. The Listeria monocytogenes genome project. Genomes 2000: International conference on microbial and model genomes 20 (2000).

    Google Scholar 

  11. Fraser, C. M. & Fleischmann, R. D. Strategies for whole microbial genome sequencing and analysis. Electrophoresis 18, 1207–1216 (1997).

    Article  CAS  Google Scholar 

  12. Frangeul, L. et al. Cloning and assembly strategies in microbial genome projects . Microbiology 145, 2625– 2634 (1999).

    Article  CAS  Google Scholar 

  13. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  Google Scholar 

  14. Parkhill, J. et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668 (2000). Sequencing Campylobacter jejuni allowed the direct identification of contingency genes from the shotgun sequence.

    Article  CAS  Google Scholar 

  15. Hood, D. W. et al. Use of the complete genome sequence information of Haemophilus influenzae strain Rd to investigate lipopolysaccharide biosynthesis. Mol. Microbiol. 22, 951–965 (1996).First example of the exploitation of genome sequence data to investigate the biology of a pathogenic organism.

    Article  CAS  Google Scholar 

  16. Linton, D. et al. Phase variation of a β-1,3 galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni. Mol. Microbiol. 37, 501– 515 (2000).

    Article  CAS  Google Scholar 

  17. Linton, D. et al. Multiple N-acetyl neuraminic acid synthetase (neuB ) genes in Campylobacter jejuni: identification and characterization of the gene involved in sialylation of lipo-oligosaccharide. Mol. Microbiol. 35, 1120–1134 (2000).

    Article  CAS  Google Scholar 

  18. Karlyshev, A. V., Linton, D., Gregson, N. A., Lastovica, A. J. & Wren, B. W. Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol. Microbiol. 35, 529–541 (2000).

    Article  CAS  Google Scholar 

  19. Wren, B. W. et al. Characterization of a haemolysin from Mycobacterium tuberculosis with homology to a virulence factor of Serpulina hyodysenteriae. Microbiology 144, 1205–1211 (1998).

    Article  CAS  Google Scholar 

  20. Heidelberg, J. F. et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae, Nature 406, 477– 483 (2000).

    Article  CAS  Google Scholar 

  21. Fraser, C. M. et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580– 586 (1997).

    Article  CAS  Google Scholar 

  22. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12 . Science 277, 1453–1474 (1997).

    Article  CAS  Google Scholar 

  23. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299– 304 (2000).

    Article  CAS  Google Scholar 

  24. Hacker, J., Blum-Oehler, G., Muhldorfer, I. & Tschape, H. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23, 1089–1097 (1997).

    Article  CAS  Google Scholar 

  25. Cheng, L. W. & Schneewind, O. Type III machines of Gram-negative bacteria: delivering the goods. Trends Microbiol. 8 , 214–220 (2000).

    Article  CAS  Google Scholar 

  26. Galan, J. E. & Collmer, A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 1322–1328 (1999).

    Article  CAS  Google Scholar 

  27. Covacci, A., Telford, J. L., Del Giudice, G., Parsonnet, J. & Rappuoli, R. Helicobacter pylori virulence and genetic geography. Science 284, 1328 –1333 (1999).

    Article  CAS  Google Scholar 

  28. Saunders, N. J., Peden, J. F., Hood, D. W. & Moxon, E. R. Simple sequence repeats in the Helicobacter pylori genome. Mol. Microbiol. 27, 1091–1098 (1998).

    Article  CAS  Google Scholar 

  29. Ferretti, J. J. et al. The complete genome sequence of an M1 strain of Streptococcus pyogenes. Genomes 2000: International conference on microbial and model genomes 21 (2000).

    Google Scholar 

  30. Andersson, S. G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133– 140 (1998).Analysis of the genome sequence of the obligate intracellular pathogen Rickettsia prowazekii revealed extensive genome downsizing and the possible origins of mitochondria.

    Article  CAS  Google Scholar 

  31. Andersson, J. O. & Andersson, S. G. E. A century of typhus, lice and Rickettsia. Res. Microbiol. 151, 143–150 (2000).

    Article  CAS  Google Scholar 

  32. Brosch, R., Gordon, S. V., Eiglmeier, K., Garnier, T. & Cole, S. T. Comparative genomics of the leprosy and tubercle bacilli. Res. Microbiol. 151, 135–142 (2000).

    Article  CAS  Google Scholar 

  33. Fraser, C. M. et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281, 375– 388 (1998).

    Article  CAS  Google Scholar 

  34. Buchrieser, C. et al. The 102-kilobase pgm locus of Yersinia pestis: sequence analysis and comparison of selected regions among different Yersinia pestis and Yersinia pseudotuberculosis strains. Infect. Immunol. 67, 4851–4861 ( 1999).

    CAS  Google Scholar 

  35. Achtman, M. et al. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl Acad. Sci. USA 96, 14043–14048 (1999).

    Article  CAS  Google Scholar 

  36. Fraser, C. M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 ( 1995).

    Article  CAS  Google Scholar 

  37. Hutchison, C. A. et al. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286, 2165– 2169 (1999).

    Article  CAS  Google Scholar 

  38. Henderson, I. R., Owen, P. & Nataro, J. P. Molecular switches—the ON and OFF of bacterial phase variation. Mol. Microbiol. 33, 919 –932 (1999).

    Article  CAS  Google Scholar 

  39. Moxon, E. R., Rainey, P. B., Nowak, M. A. & Lenski, R. E. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4, 24–33 ( 1994).

    Article  CAS  Google Scholar 

  40. Hood, D. W. et al. DNA repeats identify novel virulence genes in Haemophilus influenzae. Proc. Natl Acad. Sci. USA 93, 11121–11125 (1996). Demonstration of the rapid identification of repeat sequences for the convenient identification of new virulence determinants.

    Article  CAS  Google Scholar 

  41. Wang, G., Rasko, D. A., Sherburne, R. & Taylor, D. E. Molecular genetic basis for the variable expression of Lewis Y antigen. in Helicobacter pylori: analysis of the alpha (1,2) fucosyltransferase gene . Mol. Microbiol. 31, 1265– 1274 (1999).

    Article  CAS  Google Scholar 

  42. Appelmelk, B. J. et al. Phase variation in Helicobacter pylori lipopolysaccharide due to changes in the lengths of poly(C) tracts in alpha3-fucosyltransferase genes. Infect. Immunol. 67, 5361– 5366 (1999).

    CAS  Google Scholar 

  43. Wang, G., Ge, Z., Rasko, D. A. & Taylor, D. E. Lewis antigens in Helicobacter pylori: biosynthesis and phase variation. Mol. Microbiol. 36, 1187–1196 (2000).

    Article  CAS  Google Scholar 

  44. Saunders, N. J. et al. Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitis strain MC58. Mol. Microbiol. 37, 207–215 ( 2000).

    Article  CAS  Google Scholar 

  45. De Bolle, X. et al. The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. Mol. Microbiol. 35, 211–222 (2000).

    Article  CAS  Google Scholar 

  46. Park, S. F., Purdy, D. & Leach, S. Localized reversible frameshift mutation in the flhA gene confers phase variability to flagellin gene expression in Campylobacter coli. J. Bacteriol. 182, 207– 210 (2000).

    Article  CAS  Google Scholar 

  47. Barry, M. A., Lai, W. C. & Johnston, S. A. Protection against mycoplasma infection using expression-library immunization. Nature 377, 632– 635 (1995).

    Article  CAS  Google Scholar 

  48. Pizza, M. et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816–1820 (2000). Remarkable demonstration of the use of whole-genome sequence data from an important pathogen Neisseria meningitidis to identify seven conserved surface antigens as vaccine candidates.

    Article  CAS  Google Scholar 

  49. Hensel, M. et al. Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400– 403 (1995).First description of signature-tagged mutagenesis which allowed the identification of a second type III secretion system (spiII) in Salmonella typhimurium.

    Article  CAS  Google Scholar 

  50. Shea, J. E., Hensel, M., Gleeson, C. & Holden, D. W. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl Acad. Sci. USA 93, 2593–2597 (1996).

    Article  CAS  Google Scholar 

  51. Mei, J. M., Nourbakhsh, F., Ford, C. W. & Holden, D. W. Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol. Microbiol. 26, 399–407 ( 1997).

    Article  CAS  Google Scholar 

  52. Chiang, S. L. & Mekalanos, J. J. Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization . Mol. Microbiol. 27, 797– 805 (1998).

    Article  CAS  Google Scholar 

  53. Claus, H., Frosch, M. & Vogel, U. Identification of a hotspot for transformation of Neisseria meningitidis by shuttle mutagenesis using signature-tagged transposons . Mol. Gen. Genet. 259, 363– 371 (1998).

    Article  CAS  Google Scholar 

  54. Polissi, A. et al. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immunol. 66, 5620 –5629 (1998).

    CAS  Google Scholar 

  55. Edelstein, P. H., Edelstein, M. A., Higa, F. & Falkow, S. Discovery of virulence genes of Legionella pneumophila by using signature tagged mutagenesis in a guinea pig pneumonia model. Proc. Natl Acad. Sci. USA 96, 8190–8195 (1999).

    Article  CAS  Google Scholar 

  56. Darwin, A. J. & Miller, V. L. Identification of Yersinia enterocolitica genes affecting survival in an animal host using signature-tagged transposon mutagenesis. Mol. Microbiol. 32, 51–62 (1999).

    Article  CAS  Google Scholar 

  57. Camacho, L. R., Ensergueix, D., Perez, E., Gicquel, B. & Guilhot, C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34, 257– 267 (1999).

    Article  CAS  Google Scholar 

  58. Zhao, H., Li, X., Johnson, D. E. & Mobley, H. L. Identification of protease and rpoN-associated genes of uropathogenic Proteus mirabilis by negative selection in a mouse model of ascending urinary tract infection . Microbiology 145, 185– 195 (1999).

    Article  CAS  Google Scholar 

  59. Ogasawara, N. Systematic functional mutagenesis of Bacillus subtilis genes. Res. Microbiol. 152, 129–134 (2000).

    Article  Google Scholar 

  60. Winzeler, E. A. et al. Functional characterization of the Saccharomyces cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  Google Scholar 

  61. Brown, P. O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nature Genet. 21, 33–37 (1999).

    Article  CAS  Google Scholar 

  62. Mahan, M.J., Slauch, J. M. & Mekalanous, J. J. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259, 686 –688 (1993).

    Article  CAS  Google Scholar 

  63. Valdivia, R. H. & Falkow, S. Fluorescence-based isolation of bacterial genes expressed within host cells. Science 277, 2007–2011 ( 1993).

    Article  Google Scholar 

  64. Strauss, E. J., Falkow, S. Microbial pathogenesis: genomics and beyond. Science 276, 707– 712 (1997).

    Article  CAS  Google Scholar 

  65. Pappin, D. J. Peptide mass fingerprinting using MALDI-TOF mass spectrometry. Methods Mol. Biol. 64, 165–173 (1997).

    CAS  PubMed  Google Scholar 

  66. Fernandez, J., Gharahdaghi, F. & Mische, S. M. Routine identification of proteins from sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Electrophoresis 19, 1036–1045 (1998).

    Article  CAS  Google Scholar 

  67. Qi, S. Y., Moir, A. & O'Connor, C. D. Proteome of Salmonella typhimurium SL1344: identification of novel abundant cell envelope proteins and assignment to a two-dimensional reference map. J. Bacteriol. 178, 5032–5038 (1996).

    Article  CAS  Google Scholar 

  68. Wasinger, V. C., Pollack, J. D. & Humphery-Smith, I. The proteome of Mycoplasma genitalium Chaps-soluble component. Eur. J. Biochem. 267, 1571– 1582 (2000).

    Article  CAS  Google Scholar 

  69. O'Connor, C. D., Farris, M., Fowler, R. & Qi, S. Y. The proteome of Salmonella enterica serovar typhimurium: current progress on its determination and some applications. Electrophoresis 18, 1483–1490 (1997).

    Article  CAS  Google Scholar 

  70. Sonnenberg, M. G. & Belisle, J. T. Definition of Mycobacterium tuberculosis culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and electrospray mass spectrometry. Infect. Immunol. 65 , 4515–4524 (1997).

    CAS  Google Scholar 

  71. Jungblut, P. R. et al. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol. Microbiol. 33, 1103–1117 (1999).

    Article  CAS  Google Scholar 

  72. Tekaia, F. et al. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuber. Lung Dis. 79, 329– 342 (1999).

    Article  CAS  Google Scholar 

  73. Jungblut, P. R. et al. Comparative proteome analysis of Helicobacter pylori. Mol. Microbiol. 36, 710–725 (2000).

    Article  CAS  Google Scholar 

  74. Williams, J. M., Chen, G. C., Zhu, L. & Rest, R. F. Using the yeast two-hybrid system to identify human epithelial cell proteins that bind gonococcal Opa proteins: intracellular gonococci bind pyruvate kinase via their Opa proteins and require host pyruvate for growth. Mol. Microbiol. 27, 171–186 (1998).

    Article  CAS  Google Scholar 

  75. Hartland, E. L. et al. Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cells. Mol. Microbiol. 32, 151–158 (1999).

    Article  CAS  Google Scholar 

  76. Day, J. B. & Plano, G. V. A complex composed of SycN and YscB functions as a specific chaperone for YopN in Yersinia pestis. Mol. Microbiol. 30, 777–788 (1998).

    Article  CAS  Google Scholar 

  77. Rain, J. C. & Legrain, P. Functional proteomics on microbial pathogens. Genomes 2000: International conference on microbial and model genomes 26 (2000).

    Google Scholar 

  78. Behr, M. A. et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray . Science 284, 1520–1523 (1999).

    Article  CAS  Google Scholar 

  79. Kalman, S. et al. Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nature Genet. 21, 385 –389 (1999).

    Article  CAS  Google Scholar 

  80. Himmelreich, R. et al. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24, 4420–4449 (1996).

    Article  CAS  Google Scholar 

  81. Stover, C. K. et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964 (2000).

    Article  CAS  Google Scholar 

  82. Wong, S. M. & Mekalanos, J. J. Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 97, 10191–10196 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the author's laboratory is supported by the BBSRC, the Wellcome Trust and Beowulf Genomics. I acknowledge Dennis Linton and Elaine Allan for helpful comments and a critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

GENOME PROJECTS

Borrelia burgdorferi B31

Campylobacter jejuni NCTC11168

Chlamydia pneumoniae CWL029

Chlamydia pneumoniae AR39

Chlamydia trachomatis D/UW-3/Cx

Chlamydia trachomatis MoPn

Haemophilus influenzae Rd

Helicobacter pylori 26695

Helicobacter pylori J99

Listeria monocytogenes EGD-e

Mycobacterium leprae

Mycobacterium tuberculosis H37Rv

Mycoplasma genitalium G-37

Mycoplasma pneumoniae M129

Neisseria meningitidis A Z2491

Neisseria meningitidis B MC58

Rickettsia prowazekii Madrid E

Streptococcus pyogenes M1

Treponema pallidum Nichols

Vibrio cholerae N16961

Saccharomyces cerevisiae

Bacillus subtilis

Yersinia pestis

Escherichia coli

FURTHER INFORMATION

TIGR

Genomes online

Sanger Centre

Pasteur Institute

Los Alamos sexually transmitted pathogens database

Genomics: a global resource

Kyoto encyclopaedia of genes and genomes

Base-peak mass spectrometry

E. coli proteome

Australian proteome analysis facility

The Brown lab microarray guide

Bacterial microarrays at St. George's

Virtual genome centre

MIPS genome annotation

Sanger sequence viewer

Wren laboratory homepage

ENCYCLOPEDIA OF LIFE SCIENCES

Immune mechanisms against extracellular pathogens

Antimicrobial resistance: control

Glossary

PATHOGEN

An organism, generally a microorganism, that can cause disease in animals and plants.

VIRULENCE FACTOR

In the strict sense, a determinant that causes damage to the host cell (for example, an exotoxin). In the broader sense, a determinant required for the survival of the pathogen in the host (for example, the ability to acquire iron).

IMMUNOGEN

An antigen that produces a significant immunological response.

LATERAL GENE TRANSFER

The transfer of DNA, frequently cassettes of genes, between organisms.

ENTERIC PATHOGEN

A pathogen that resides in the gastrointestinal tract.

COMPETENCE

The ability of bacteria to take up exogenous DNA molecules.

EXOTOXINS

Generally secreted proteins that cause damage to the host cell.

OBLIGATE INTRACELLULAR PATHOGEN

A pathogen that lives exclusively within the host, and depends on the host for survival.

FASTIDIOUS INTRACELLULAR PATHOGEN

A pathogen that lives within the host and has stringent growth requirements.

LEWIS ANTIGENS

Fucosylated carbohydrate antigens usually found on the surface of eukaryotic cells. They are structurally related to human ABH blood group systems.

MUCOSAL PATHOGEN

A pathogen that frequents the mucosal surface (for example, nose, lungs and gastrointestinal tract) of the host.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wren, B. Microbial genome analysis: insights into virulence, host adaptation and evolution. Nat Rev Genet 1, 30–39 (2000). https://doi.org/10.1038/35049551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35049551

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing