Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantitative trait loci in Drosophila

Key Points

  • Quantitative trait phenotypes are continuously distributed in natural populations, due to segregation of alleles at multiple quantitative trait loci (QTL) and environmental sensitivity of QTL alleles.

  • Determining the genetic and environmental bases of variation for quantitative traits is important for human health, agriculture, and the study of evolution.

  • Complete genetic dissection of quantitative traits is currently feasible only in genetically tractable and well characterized model systems, such as Drosophila melanogaster.

  • Genomic regions containing QTL affecting within-species variation (in sensory bristle number, wing shape, life span and other life history traits) and variation in morphological differences between species have been mapped by linkage to neutral, polymorphic molecular markers. Multiple QTL affect variation in each of the traits studied.

  • Drosophila QTL often have sex- and/or environment-specific effects, and can interact non-additively (that is, exhibit epistasis).

  • Drosophila QTL are mapped with high resolution using a quantitative version of deficiency complementation mapping.

  • Genetic loci that interact with QTL alleles are identified using quantitative complementation tests, provided stocks with mutant alleles exist.

  • Screens for viable P transposable element-induced mutations with quantitative phenotypic effects define novel pleiotropic effects of known loci and functions of predicted genes, and provide mutant stocks that can be used in quantitative complementation tests.

  • Linkage disequilibrium mapping is used to determine which candidate genes correspond to QTL, and which molecular polymorphisms within candidate genes are associated with quantitative variation in phenotypes.

  • Molecular polymorphisms in non-coding regions of candidate genes are associated with quantitative variation in phenotypes; such associations are often sex-specific.

  • Quantitative traits in other organisms are likely to have equally complex genetic architectures.

Abstract

Phenotypic variation for quantitative traits results from the simultaneous segregation of alleles at multiple quantitative trait loci. Understanding the genetic architecture of quantitative traits begins with mapping quantitative trait loci to broad genomic regions and ends with the molecular definition of quantitative trait loci alleles. This has been accomplished for some quantitative trait loci in Drosophila. Drosophila quantitative trait loci have sex-, environment- and genotype-specific effects, and are often associated with molecular polymorphisms in non-coding regions of candidate genes. These observations offer valuable lessons to those seeking to understand quantitative traits in other organisms, including humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of quantitative traits.
Figure 2
Figure 3: Quantitative trait locus mapping.
Figure 4: Quantitative trait locus effects.
Figure 5: Linkage disequilibrium mapping.

Similar content being viewed by others

References

  1. Goffeau, A. et al. Life with 6,000 genes. Science 274, 546–567 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. The C. elegans sequencing consortium. Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282, 2012–2018 (1998).

  3. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  4. Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Addison Wesley Longman, Harlow, 1996).

    Google Scholar 

  5. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, Sunderland, Massachusetts, 1998).

    Google Scholar 

  6. Robertson, A. in Heritage From Mendel (ed. Brink, A.) 265–280 (Univ. Wisconsin, Madison, Wisconsin, 1967).The terms in which we must seek to describe genetic variation in quantitative traits are clearly set out in this article, which remain as valid today as they were over thirty years ago.

    Google Scholar 

  7. Ashburner, M. Drosophila, A Laboratory Handbook (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  8. Rong, Y. & Golic, K. G. Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Sax, K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8, 552–560 (1923).This was the first attempt to map QTL by association with Mendelian markers.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Breese. E. L. & Mather, K. The organization of polygenic activity within a chromosome of Drosophila. I. Hair characters. Heredity 11, 373–395 (1957).

    Article  Google Scholar 

  11. Nadeau, J. H., Singer, J. B., Matin, A. & Lander, E. S. Analysing complex genetic traits with chromosome substitution strains. Nature Genet. 24, 221–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Thoday, J. M. Location of polygenes. Nature 191, 368–370 (1961).The first paper to describe interval mapping in the context of QTL mapping, and summarize its application to mapping QTL for Drosophila bristle number.

    Article  Google Scholar 

  13. Shrimpton, A. E. & Robertson, A. The isolation of polygenic factors controlling bristle score in Drosophila melanogaster. II. Distribution of third chromosome bristle effects within chromosome sections. Genetics 118, 445–459 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lander, E. S. & Botstein, D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989).A landmark paper, proposing the use of interval mapping with molecular markers to localize QTL in species that do not contain multiple morphological markers, and developing a maximum likelihood statistical framework to analyse such data.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zeng, Z. -B. Precision mapping of quantitative trait loci. Genetics 136, 1457–1468 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang, C. & Zeng, Z. -B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140, 1111–1127 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kao, C. -H., Zeng, Z. -B. & Teasdale, R. Multiple interval mapping for quantitative trait loci. Genetics 152, 1203–1216 (1999).References 15 17 refine the precision of QTL mapping by including marker cofactors to account for multiple QTL, and extend QTL mapping analysis to include multiple traits and epistasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Long, A. D. et al. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics 139, 1273–1291 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gurganus, M. C. et al. Genotype-environment interaction at quantitative trait loci affecting sensory bristle number in Drosophila melanogaster. Genetics 149, 1883–1898 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gurganus, M. C., Nuzhdin, S. V., Leips, J. W., & Mackay, T. F. C. High-resolution mapping of quantitative trait loci for sternopleural bristle number in Drosophila melanogaster. Genetics 152, 1585–1604 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nuzhdin, S. V., Dilda, C. L. & Mackay, T. F. C. The genetic architecture of selection response: inferences from fine-scale mapping of bristle number quantitative trait loci in Drosophila melanogaster. Genetics 153, 1317–1331 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Weber, K. et al. An analysis of polygenes affecting wing shape on chromosome 3 in Drosophila melanogaster. Genetics 153, 773–786 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nuzhdin, S. V., Pasyukova, E. G., Dilda, C. L., Zeng, Z. -B. & Mackay, T. F. C. Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 94, 9734–9739 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vieira, C. et al. Genotype-environment interaction for quantitative trait loci affecting lifespan in Drosophila melanogaster. Genetics 154, 213–227 (2000).References 23 and 24 illustrate that QTL effects can depend on the sex, physical environment and genetic environment in which they are estimated.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Leips, J. & Mackay, T. F. C. Quantitative trait loci for lifespan in Drosophila melanogaster: interactions with genetic background and larval density. Genetics 155, 1773–1788 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, J. et al. Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana. Genetics 142, 1129–1145 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zeng, Z.-B. et al. Genetic architecture of a morphological shape difference between two Drosophila species. Genetics 154, 299–310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wayne, M. L. et al. Quantitative trait loci for fitness–related traits in Drosophila melanogaster. Genet. Res. (in the press).

  29. Fry, J. D., Nuzhdin, S. V., Pasyukova, E. G. & Mackay, T. F. C. QTL mapping of genotype-environment interaction for fitness in Drosophila melanogaster. Genet. Res. 71, 133–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Houle, D., Morikawa, B. & Lynch, M. Comparing mutational variabilities. Genetics 143, 1467–1483 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Levene, H. Genetic equilibrium when more than one ecological niche is available. Am. Nature 87, 331–333 (1953).

    Article  Google Scholar 

  32. Gillespie, J. H. & Turelli, M. Genotype-environment interactions and the maintenance of polygenic variation. Genetics 121, 129–138 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fry, J. D., Heinsohn, S. L. & Mackay, T. F. C. The contribution of new mutations to genotype-environment interaction for fitness in Drosophila melanogaster. Evolution 50, 2316–2327 (1996).

    Article  PubMed  Google Scholar 

  34. Lynch, M. & Hill, W. G. Phenotypic evolution by neutral mutation. Evolution 40, 915–935 (1986).

    Article  PubMed  Google Scholar 

  35. Wolstenholme, D. R. & Thoday, J. M. Effects of disruptive selection. VII. A third chromosome polymorphism Heredity 10, 413–431 (1963).

    Article  Google Scholar 

  36. Spickett, S. G. & Thoday, J. M. Regular responses to selection. 3. Interactions between located polygenes. Genet. Res. 7, 96–121 (1966).

    Article  CAS  PubMed  Google Scholar 

  37. López-Fanjul, C. & Hill, W. G. Genetic differences between populations of Drosophila melanogaster for a quantitative trait. Laboratory populations. Genet. Res. 22, 51–68 (1973).

    Article  PubMed  Google Scholar 

  38. López-Fanjul, C. & Hill, W. G. Genetic differences between populations of Drosophila melanogaster for a quantitative trait. Wild and laboratory populations. Genet. Res. 22, 69–78 (1973).

    Article  PubMed  Google Scholar 

  39. Pasyukova, E. G., Vieira, C. & Mackay, T. F. Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster. Genetics 156, 1129–1146 (2000).The first attempt to fine-map QTL using deficiency complementation.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Darvasi, A. Experimental strategies for the genetic dissection of complex traits in animal models. Nature Genet. 18, 19–24 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Nadeau, J. H. & Frankel, D. The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs. Nature Genet. 25, 381–384 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Long, A. D., Lyman, R. F., Morgan, A. H., Langley, C. H. & Mackay, T. F. C. Both naturally occurring insertions of transposable elements and intermediate frequency polymorphisms at the achaete-scute complex are associated with variation in bristle number in Drosophila melanogaster. Genetics 154, 1255–1269 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lyman, R. F., Lai, C. & Mackay, T. F. C. Linkage disequilibrium mapping of molecular polymorphisms at the scabrous locus associated with naturally occurring variation in bristle number in Drosophila melanogaster. Genet. Res. 74, 303–311 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Lyman, R. F. & Mackay, T. F. C. Candidate quantitative trait loci and naturally occurring phenotypic variation for bristle number in Drosophila melanogaster: The Delta-Hairless gene region. Genetics 149, 983–998 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ashburner, M. et al. An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: the Adh region. Genetics 153, 179–219 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Long, A. D., Mullaney, S. L., Mackay, T. F. C., & Langley, C. H. Genetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci affecting bristle number in Drosophila melanogaster. Genetics 14, 1497–1510 (1996).

    Google Scholar 

  47. Mackay, T. F. C. & Fry, J. D. Polygenic mutation in Drosophila melanogaster: Genetic interactions between selection lines and candidate quantitative trait loci. Genetics 144, 671–688 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Campos-Ortega, J. A. in The Development of Drosophila melanogaster Vol. 2 (eds Bate, M. & Martinez Arias, A.) 1091–1129 (Cold Spring Harbor Laboratory, Plainview, New York, 1993).

    Google Scholar 

  49. Jan, Y. N. & Jan, L. Y. in The Development of Drosophila melanogaster Vol. 2 (eds Bate, M. & Martinez Arias, A.) 1207–1244 (Cold Spring Harbor Laboratory, Plainview, New York, 1993).

    Google Scholar 

  50. Spradling, A. C. et al. The Berkeley Drosophila genome gene disruption project: Single P element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135–177 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Clark, A. G., Wang, L & Hulleberg, T. P-element-induced variation in metabolic regulation in Drosophila. Genetics 139, 337–348 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lyman, R. F., Lawrence, F. Nuzhdin, S. V. & Mackay, T. F. C. Effects of single P element insertions on bristle number and viability in Drosophila melanogaster. Genetics 143, 277–292 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Anholt, R. R. H., Lyman, R. F. & Mackay, T. F. C. Effects of single P element insertions on olfactory behavior in Drosophila melanogaster. Genetics 143, 293–301 (1996).An example of the utility of screening for quantitative effects of insertional mutations to identify new loci that affect quantitative phenotypes.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fedorowicz, G. M., Fry, J. D., Anholt, R. R. H. & Mackay, T. F. C. Epistatic interactions between smell-impaired loci in Drosophila melanogaster. Genetics 148, 1885–1891 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Clark, A. G. & Wang, L. Epistasis in measured genotypes: Drosophila P element insertions. Genetics 147, 157–163 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Weir, B. S. Genetic Data Analysis II (Sinauer Associates, Sunderland, Massachusetts, 1996).

    Google Scholar 

  57. Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet. 22, 139–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Aquadro, C. F., Desse, S., Bland, M., Langley, C. H. & Laurie-Ahlberg, C. C. Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster. Genetics 114, 1165–1190 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Miyashita, N. & Langley, C. H. Molecular and phenotypic variation of the white locus region in Drosophila melanogaster. Genetics 120, 199–212 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Langley, C. H. et al. Naturally occurring variation in the restriction map of the Amy region of Drosophila melanogaster. Genetics 119, 619–629 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Miyashita, N. Molecular and phenotypic variation of the Zw locus region in Drosophila melanogaster. Genetics 125, 407–419 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Aquadro, C. F., Jennings, R. M., Bland, M., Laurie, C. C. & Langley, C. H. Patterns of naturally occurring restriction map variation, Dopa decarboxylase activity variation and linkage disequilibrium in the Ddc gene region of Drosophila melanogaster. Genetics 132, 443–452 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Game, A. Y. & Oakeshott, J. G. The association between restriction site polymorphism and enzyme activity variation for Esterase 6 in Drosophila melanogaster. Genetics 126, 1021–1031 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mackay, T. F. C. & Langley, C. H. Molecular and phenotypic variation in the achaete-scute region of Drosophila melanogaster. Nature 348, 64–66 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. Lai, C., Lyman, R. F., Long, A. D., Langley, C. H. & Mackay, T. F. C. Naturally occurring variation in bristle number and DNA polymorphisms at the scabrous locus of Drosophila melanogaster. Science 266, 1697–1702 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Long, A. D., Lyman, R. F., Langley, C. H. & Mackay, T. F. C. Two sites in the Delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster. Genetics 149, 999–1017 (1998).An example of the application of linkage disequilibrium mapping at a candidate gene that affects quantitative variation in sensory bristle number, in which limitations of this approach and future directions are discussed.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Long, A. D. & Langley, C. H. Power of association studies to detect the contribution of candidate genetic loci to complexly inherited phenotypes. Genome Res. 9, 720–731 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Weir, B. S. & Hill, W. G. Nonuniform recombination within the human β-globin gene cluster. Am. J. Hum. Genet. 38, 776–778 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hill, W. G. & Weir, B. S. Variances and covariances of squared linkage disequilibria in finite populations. Theor. Pop. Biol. 33, 54–78 (1988).

    Article  CAS  Google Scholar 

  71. Hill, W. G. & Weir, B. S. Maximum likelihood estimation of gene location by linkage disequilibrium. Am. J. Hum. Genet. 54, 705–714 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Laurie-Ahlberg, C. C. & Stam, L. F. Use of P-element-mediated transformation to identify the molecular basis of naturally occurring variants affecting Adh expression in Drosophila melanogaster. Genetics 115, 129–140 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Choudhary, M. & Laurie, C. C. Use of in vitro mutagenesis to analyse the molecular basis of the difference in Adh expression associated with the allozyme polymorphism in Drosophila melanogaster. Genetics 129, 481–488 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Laurie, C. C., Bringham, J. T. & Choudhary, M. Associations between DNA sequence variation and variation in gene expression of the Adh gene in natural populations of Drosophila melanogaster. Genetics 129, 489–499 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Laurie, C. C. & Stam, L. F. The effect of an intronic polymorphism on alcohol dehydrogenase expression in Drosophila melanogaster. Genetics 138, 379–385 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Stam, L. F. & Laurie, C. C. Molecular dissection of a major gene effect on a quantitative trait: the level of alcohol dehydrogenase expression in Drosophila melanogaster. Genetics 144, 1559–1564 (1996).A summary of several experiments combining in vitro mutagenesis with P element transformation to determine the causal relationship between naturally occurring DNA sequence variation and quantitative variation in enzyme activity and protein stability. Evidence for multiple, interacting polymorphic sites within a single locus is presented.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rubin, G. M. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sing, C. F. & Moll, P. P. Genetics of atherosclerosis. Ann. Rev. Genet. 24, 171–187 (1990).

    Article  CAS  PubMed  Google Scholar 

  79. Nickerson, D. A. et al. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nature Genet. 19, 233–240 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Churchill, G. A. & Doerge, R. W. Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Doerge, R. W. & Churchill, G. A. Permutation tests for multiple loci affecting a quantitative character. Genetics 142, 285–294 (1996).References 80 and 81 elaborate the use of permutation testing to set the appropriate threshold above which to declare significant QTL, given multiple tests and correlated markers.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the author's laboratory is supported by the National Institute of Health and by the W. M. Keck Center for Behavioral Biology of North Carolina State University.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

ASC

N

sca

Dl

Adh

smi loci

FURTHER INFORMATION

Berkeley Drosophila Genome Gene Disruption Project

Homophila

ENCYCLOPEDIA OF LIFE SCIENCES

Quantitative genetics

Glossary

INTROGRESSION

Transfer of genetic material from one strain to another by repeated backcrosses. With marker-assisted introgression, markers that distinguish the parental strains are used to track the desired interval and select against the undesired genotype.

ANTAGONISTIC PLEIOTROPY

Alternative homozygous genotypes (A1A1, A2A2) have opposite phenotypic effects under different conditions.

CONDITIONAL NEUTRALITY

The difference between quantitative trait loci genotypes is only expressed under some conditions.

VARIANCE

A statistic to quantify dispersion about the mean. In quantitative genetics, the phenotypic variance, VP, is the observed variation of the trait in a population. VP is partitioned into components due to variation in the additive (VA) dominance (VD) and epistatic (VI) genetic variance, the variance attributable to the environment (VE), and gene–environment correlations and interactions.

BACKCROSS

The cross of the F1 progeny of two parental strains to either of the two parents.

PROGENY TEST

Crossing an individual at random to a number of unrelated individuals in the population, and determining the mean phenotype of the progeny. The progeny mean phenotype is a more accurate measure of the genetic merit of the tested individual than the individual's own phenotype.

HERITABILITY

The fraction of the phenotypic variance attributable to additive genetic variance (VA/VP).

LIKELIHOOD RATIO

A method for hypothesis testing. The maximum of the likelihood that the data fit a full model of the data is compared with the maximum of the likelihood that the data fit a restricted model and the likelihood ratio (LR) test statistic is computed. If the LR test statistic is significant, the full model provides a better fit to the data than does the restricted model.

PERMUTATION TEST

A statistical test in which the data are randomized many times to determine the statistical significance of the experimental outcome (in this case, the association of a quantitative trait phenotype and a multi-locus marker).

OVERDOMINANT

Heterozygote superiority. The phenotype of the heterozygote is greater than that of either homozygotes. Overdominance for fitness can lead to the maintenance of both alleles in the population.

STABILIZING SELECTION

Intermediate phenotypes have greater fitness than extreme high and low scoring phenotypes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackay, T. Quantitative trait loci in Drosophila. Nat Rev Genet 2, 11–20 (2001). https://doi.org/10.1038/35047544

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35047544

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing