taken in two planes: the first was a contact
image and the second was a phase-contrast
image with the detector 1.8 m from the
object (Fig. 2a). Using the contact image and
the phase-contrast image, we approximate
the intensity by their average, and the inten-
sity derivative by their difference divided by
their separation. We used this approach to
image a sinker made of lead aligned longitu-
dinally with the beam (Fig. 2a, inset). The
measured phase from equation (1) is shown
in Fig. 2b. The phase deformity is an artefact
of a gadolinium fiducial mark; the hollow
core can be clearly seen in the phase image.

The phase image obtained is, to a good
approximation, described by a convolution
of the perfect image with the intensity dis-
tribution of the effective source. In our
analysis, we used a very conservative esti-
mate of the effective width of the neutron
source to modify the phase-recovery algo-
rithm. A profile of the recovered phase is
plotted in Fig. 2c, together with the predict-
ed phase profile determined from the sam-
ple geometry, scattering length and
orientation, and gives good quantitative
agreement between the two. Note that the
1,400-rad phase excursion of the sample
occurs in a few hundred micrometres (less
than ten pixels). An interferometric experi-
ment would require submicrometre resolu-
tion to measure such a rapid phase
excursion accurately.

This simple and general technique pro-
vides independent quantitative phase and
absorption images of the sample. These
images constitute two-dimensional projec-
tions of the real and imaginary parts of
the neutron refractive-index distribution
through a three-dimensional object. A
number of these projections could be used
to generate a quantitative tomographic
reconstruction.
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Scaling

Rivers, blood and
transportation networks

he search for a theory to explain why

the metabolic rate of mammals is pro-

portional to the 3/4-power of body
mass (Kleiber’s law) has recently focused on
the nutrient distribution network formed
by arteries and capillaries. Banavar et al.'
argue that the law follows from the intrinsic
properties of an outward-directed network.
But careful analysis of their arguments
reveals two implicit assumptions that may
not be generally correct. Unless these
assumptions are valid for mammalian cir-
culation, these arguments cannot satisfact-
orily explain Kleiber’s empirical relationship.

In the analysis by Banavar et al.!, there is
a site for nutrient uptake at each network-
branching point, and the distance Ly along a
path from the origin O (the heart) to a site X
is defined as the number of uptake sites on
the path. The rate of uptake of nutrients at a
site is a constant F (assumed to be species-
and size-invariant). A network segment that
goes from a site X to an adjacent site Y is
termed the link XY, and the rate at which
nutrient enters the link is termed the current
and is denoted by I,. In an outward-direct-
ed network (ODN), the direction of flow is
away from O on each link.

The authors’ fundamental result is that,
in an ODN, C= B<L,>, where C, the total
current in the network, is the sum of cur-
rents on all links, B is the metabolic rate
(sum of uptake rates), and <L,> is the aver-
age distance to sites. The number of uptake
sites is expressed as L’, and the metabolic
rate B is therefore FyL’. Banavar et al. prove
that, if <Ly> is proportional to L, if C is
proportional to blood volume V;, and if V;
is proportional to body size M, then B is
proportional to M*"*, which is Kleiber’s law.

Although the assumption that V;y o« Mis a
reasonable approximation, the assumption
that Co V is not, in general, true. Consider
a network formed by (I—1)(m—1)(n—1)
unit cubes stacked to form a rectangle (/—1)
units deep by (m— 1) units wide by (n—1)
units high. Each vertex of a cube is an uptake
site and each edge is a network link with con-
stant cross-sectional area. Current is sup-
plied to the bottom rear left corner of the
network and flows forward, rightward and
upward. It follows from induction on # that
the sum of currents in all vertical links is
Imn(n+1)F,/2. Adding the corresponding
expressions for currents flowing rightward
and forward gives ImnFy(I+m+n+3)/2,
the total current C. The blood in the network
is proportional to the number of links,
3Imn— Im— In— mn. Thus, in this model, in
which the density of uptake sites is invariant,
C is nearly proportional to volume multi-
plied by average linear dimension, metabo-
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lism is proportional to volume, and Vj is
approximately proportional to volume.

The relation between V; and C depends
on parameters that do not appear in
Banavar et al’s report'. The volume of
blood in link XY is equal to the cross-sec-
tional area of the link (Ay,) multiplied by
the length of the link (sy,), whereas current
Iy is Ay, multiplied by flow velocity (fyy)-
The volume of blood in a link is therefore
LySxy /fyy- The assumption that the sum of
currents equals (or scales as) total blood
volume implies that the average value of sy,
increases as size increases. In arteries, the
flow velocity may increase as size increases,
but flow rates in capillaries are severely con-
strained by their relatively constant cross-
sectional area and pressure. If most uptake
sites are located in capillary networks, the
currents in capillaries comprise most of the
sum C, but the blood in these vessels may
comprise a minority of blood volume.

The assumption that < L> « L is also not
true in general in an ODN. For example,
consider a network that starts with a single
link and bifurcates at each branch point until
a terminal uptake site is reached at distance
k. The number of uptake sites, L’, is 2k—1
and <L,> is [(k—1)2¥=1]/(2"=1). There-
fore <Ly> is approximately proportional to
the logarithm of L in this type of ODN.
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The long-standing problem of explaining
metabolic scaling’ in animals, whereby
whole-animal metabolic rate B is observed
to increase as a function of body mass M
approximately as M, has been recently
revisited by Banavar et al.' (see also ref. 3, in
which allometric scaling rules are derived
from fractal geometry). These authors'
derive and generalize to non-biological sys-
tems, including river networks, a three-
quarter-power ‘allometric’ scaling rule,
which arises, in their treatment, from an
assumption of the efficiency of the resource
distribution network. Here I present a sim-
ple derivation of 3/4-power scaling based
on the geometric requirements of invento-
rying resources before metabolization,
which does not support the notion of allo-
metric scaling suggested by Banavar et al.’
for rivers, at least not when applied to the
problem of fluvial sediment transport.
Although some distributary  systems
‘metabolize’ according to the 3/4-power
rule, this rule is not golden — each system
needs to be investigated on its own merits.
As a resource distribution and process-
ing (metabolizing) system increases in size,
there is a geometric necessity for an incom-
pressible and conserved resource for
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resource inventory in the transportation
network also to increase as it awaits metab-
olization. Equating the rate of flow through
the inventory volume to the rate of flow
through the metabolizing volume provides
a relation determining the scaling behav-
iour of the metabolization rate. Thus, if a
three-dimensional metabolizing system
contains two volumes, one, V,,, within
which metabolization of resources occurs,
and one, V;, within which the resource is
inventoried, and if these volumes are
sequentially connected and the resource is
incompressible and conserved, then
Vu/ ™= Vi/ T, where 7 is the residence time
of resource in the metabolizing volume, and
T is the residence time of the resource in
inventory. The metabolic rate is Boc Vy/7.

If metabolization occurs in small vol-
umes, V.., of fixed size, then Vy, « V. (L/])’
where [ is the average spacing between
metabolizing volumes. The inventoried
resource for each metabolizing volume V,_,
is distributed in a queue that extends across
the length of the system L, with L/] units of
inventory volume V; earmarked for each
volume V.. If V; is independent of L
(which would be expected in systems where
the rate-limiting process was metaboliza-
tion rather than transport), then 7/7is pro-
portional to L/ (that is, the ratio of average
velocities U/u in the two volumes V; and V),
is independent of L). The total inventory
volume then scales as Vo« (I/I)* (that is,
loc L), so that L/l V', and metabolic
rate is given by B« V;*/r.

Three-quarter-power scaling of total
metabolic rate as a function of system size
follows under the additional assumptions'
that V; (‘blood’ volume) is proportional to
system (‘whole animal’) volume (or mass),
and that 7 is independent of system size. It
is worth noting that, in the geometric argu-
ment presented here, the distribution of
metabolic units, V., is taken to be uniform
for purposes of counting, but the actual
spacing can be highly non-uniform without
affecting the overall scaling argument.

If allometric scaling of the kind found
for animals has almost universal applicabili-
ty to resource distribution systems, as sug-
gested by Banavar et al.', it ought to apply
to rivers, an application they consider. Con-
sider the particular case of sediment trans-
port in rivers, in which the metabolic rate of
a drainage basin of area A is the rate at
which sediment is delivered by the trunk
stream to the lower end of the drainage
basin. An analogue of blood volume V; is
the total sediment volume in transport,
Voo LID*(T/T), where V., is the volume of
sediment delivered from hillslopes to
stream channels from a small hillslope area
I* during time 7, and T'is the residence time
of such sediment in the channel system of
drainage basin A with linear dimension L.

However, in fluvial systems there is no
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apparent basis for assuming that the veloci-
ty ratio U/u is independent of A. It is also
difficult to identify a fluvial analogue of the
constraint' that blood volume is propor-
tional to animal volume. One difference
between rivers and organisms in this regard
is that, in rivers, sediment can be easily
stored laterally and vertically in flood
plains. Flood plains, lying outside the chan-
nels themselves, occupy a third volume rep-
resenting a kind of long-term storage. Such
‘loss’ of sediment between hillslope and
river mouth can be a significant effect* in
fluvial sediment budgets. The relation
equating rates of flow in inventory and
metabolizing volumes is valid only if there
is no third volume for storing resources.
Models of the kind proposed by Banavar et
al." for biological organisms do not appear
to be sufficient for deriving scaling relations
for river (sediment) metabolism; such
models potentially apply only to distribu-
tion of an incompressible resource in a sys-
tem with ‘two-volume’ geometry.
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Banavar et al. reply — The idea behind our
theorem' is simple. It can be illustrated by
using airline travel as an example. Consider
a stream of people (blood) leaving London
(heart) at a steady rate and fanning out to all
parts of the world (body). The number of
people leaving London each day and arriv-
ing elsewhere at their final destinations
(metabolic rate) is denoted by B. Assuming
that the people travel along a locally con-
nected network and that the transit time for
each local hop is the same (say, 1 day), the
number of people in transit at any given
time (blood volume) is proportional to B,
but with a proportionality constant that is
given by the mean number of hops from all
the destination cities to London.

This additional factor arises because if,
for example, there are P people who arrive
in, say, Paris (let us assume Paris is two hops
from London — London-Brussels—Paris)
each day, there are 2P passengers in transit at
any given time whose final destination is
Paris (P of them are en route from London
to Brussels and the other P are travelling
from Brussels to Paris). In a D-dimensional
space, if B scales as L”, our theorem asserts
that because the mean number of hops must
itself scale at least as L, the total number of
people in transit must scale at least as L°*".

Haff points out the difference between
the scaling properties of water flow and
sediment transport in rivers and that river
sediments can be stored in flood plains.
Although water flow at a given point is
proportional to the area of the sub-basin
draining into it, the sediment discharge is
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not, because the source of sediments is not
uniform in space, unlike the rainfall in
landscape-forming events’. Rather, sedi-
ment production is scattered in space and
time, and not isochrone with the main
transport mechanisms in the network. In
fluvial systems, scaling networks are station-
ary structures derived from the evolutionary
dynamics of the topography of landscapes®.
Painter’s exercise of the parallelepiped,
showing that the mean number of hops
from the origin, <Ly>, is proportional to L
is in accord with our theorem. Painter
assumes that the blood in the network is
proportional to the number of links — or,
by analogy, that the total number of people
in transit is proportional to the number of
operating flights — but this assumption is
wrong because there are many more people
crammed into flights originating from Lon-
don than in those from cities distant from
London. The number of flights is indeed
proportional to the number of destinations
and the metabolic rate B. The branching
network in Painter’s last paragraph is a Cay-
ley tree which, for large enough sizes, can-
not exist in any finite-dimensional space.
The observation that in an N-site Cayley
tree the average distance from the origin
scales as InN, which is what would be
expected for a D-dimensional lattice in the
infinite D limit, agrees with our theorem.
We do not believe that fractal-like
networks effectively endow life with an
additional fourth dimension’. Allometric
scaling comes built in with any system in
which the flow is directed and the circula-
tion time is proportional to circulation
length, irrespective of size'. The fact that
nature, in spite of her extreme diversity,
exhibits allometric scaling to the extent she
does in plants, animals and river networks
suggests that optimality associated with
directedness is quite common.
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