Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Matrix proteins can generate the higher order architecture of the Golgi apparatus

Abstract

The Golgi apparatus in animal cells comprises a reticulum of linked stacks in the pericentriolar and often in the juxtanuclear regions of the cell1. The unique architecture of this organelle is thought to depend on the cytoskeleton2 and cytoplasmic matrix proteins3,4—the best characterized being the golgin family of fibrous, coiled-coil proteins and the GRASP family of stacking proteins5,6,7,8,9,10. Here we show that these matrix proteins can be separated from oligosaccharide-modifying enzymes in the Golgi stack without affecting their ability to form a ribbon-like reticulum in the correct location near to the nucleus. Our data suggest that the Golgi is a structural scaffold that can exist independently of, but is normally populated by, the enzyme-containing membranes that modify transiting cargo. This new concept of the Golgi further indicates that the Golgi may be an autonomous organelle rather than one that is in simple dynamic equilibrium with the endoplasmic reticulum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of blocking ER exit by Sar1DN on reassembly of the Golgi apparatus after BFA wash out.
Figure 2: Ultrastructure of NRK cells treated with BFA and/or micro-injected with Sar1DN.
Figure 3: Localization of GM130 by immuno-electron microscopy.
Figure 4: Effect of Sar1DN on the pattern of Golgi enzymes and matrix proteins.

Similar content being viewed by others

References

  1. Farquhar, M. G. & Palade, G. E. The Golgi-apparatus—100 years of progress and controversy. Trends Cell Biol. 8, 2–10 (1998).

    Article  CAS  Google Scholar 

  2. Donaldson, J. G. & Lippincott-Schwartz, J. Sorting and signaling at the Golgi complex. Cell 101, 693–696 (2000).

    Article  CAS  Google Scholar 

  3. Dematteis, M. A. & Morrow, J. S. The role of ankyrin and spectrin in membrane-transport and domain formation. Curr. Opin. Cell. Biol. 10, 542–549 (1998).

    Article  CAS  Google Scholar 

  4. Linstedt, A. D. Stacking the cisternae. Curr. Biol. 9, R893 –R896 (1999).

    Article  CAS  Google Scholar 

  5. Nakamura, N. et al. Characterization of a cis-Golgi matrix protein, GM130. J. Cell Biol. 131, 1715–1726 (1995).

    Article  CAS  Google Scholar 

  6. Barr, F. A. A novel Rab6-interacting domain defines a family of Golgi-targeted coiled-coil proteins. Curr. Biol. 9, 381– 384 (1999).

    Article  CAS  Google Scholar 

  7. Munro, S. & Nichols, B. J. The GRIP domain—a novel Golgi-targeting domain found in several coiled-coil proteins. Curr. Biol. 9, 377–380 ( 1999).

    Article  CAS  Google Scholar 

  8. Shorter, J. et al. GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. EMBO J. 18, 4949–4960 (1999).

    Article  CAS  Google Scholar 

  9. Sonnichsen, B. et al. Role for Giantin in docking COPI vesicles to Golgi membranes. J. Cell Biol. 140, 1013– 1021 (1998).

    Article  CAS  Google Scholar 

  10. Kjer-Nielsen, L., Teasdale, R. D., van Vliet, C. & Gleeson, P. A. A novel Golgi-localisation domain shared by a class of coiled-coil peripheral membrane proteins. Curr. Biol. 9, 385– 388 (1999).

    Article  CAS  Google Scholar 

  11. Rothman, J. E. & Wieland, F. T. Protein sorting by transport vesicles. Science 272, 227– 234 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Aridor, M., Bannykh, S. I., Rowe, T. & Balch, W. E. Sequential coupling between COPII and COPI vesicle coats in endoplasmic-reticulum to Golgi transport. J. Cell Biol. 131, 875– 893 (1995).

    Article  CAS  Google Scholar 

  13. Pepperkok, R., Lowe, M., Burke, B. & Kreis, T. E. Three distinct steps in transport of vesicular stomatitis virus glycoprotein from the ER to the cell surface in vivo with differential sensitivities to GTP gamma S. J. Cell Sci. 111, 1877– 1888 (1998).

    CAS  PubMed  Google Scholar 

  14. Lippincott-Schwartz, J., Yuan, L. C., Bonifacino, J. S. & Klausner, R. D. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56, 801–813 (1989).

    Article  CAS  Google Scholar 

  15. Doms, R. W., Russ, G. & Yewdell, J. W. Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum. J. Cell Biol. 109, 61–72 (1989).

    Article  CAS  Google Scholar 

  16. Sandvig, K., Prydz, K., Hansen, S. H. & van, D. B. Ricin transport in brefeldin A-treated cells: correlation between Golgi structure and toxic effect. J. Cell Biol. 115, 971– 981 (1991).

    Article  CAS  Google Scholar 

  17. Hendricks, L. C., McClanahan, S. L., McCaffrey, M., Palade, G. E. & Farquhar, M. G. Golgi proteins persist in the tubulovesicular remnants found in Brefeldin A-treated pancreatic acinar cells. Eur. J. Cell Biol. 58, 202– 213 (1992).

    CAS  PubMed  Google Scholar 

  18. Lippincott-Schwartz, J. et al. Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell 60, 821–836 ( 1990).

    Article  CAS  Google Scholar 

  19. Shima, D. T., Cabrera-Poch, N., Pepperkok, R. & Warren, G. An ordered inheritance strategy for the Golgi apparatus: visualization of mitotic disassembly reveals a role for the mitotic spindle. J. Cell Biol. 141, 955–966 (1998).

    Article  CAS  Google Scholar 

  20. Cole, N. B., Sciaky, N., Marotta, A., Song, J. & Lippincott-Schwartz, J. Golgi dispersal during microtubule disruption—regeneration of Golgi stacks at peripheral endoplasmic-reticulum exit sites. Mol. Biol. Cell 7, 631–650 (1996).

    Article  CAS  Google Scholar 

  21. Storrie, B. et al. Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J. Cell Biol. 143, 1505 –1521 (1998).

    Article  CAS  Google Scholar 

  22. Girod, A. et al. Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nature Cell Biol. 1, 423–430 (1999).

    Article  CAS  Google Scholar 

  23. Lippincott-Schwartz, J. et al. Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell 67, 601–616 (1991).

    Article  CAS  Google Scholar 

  24. Reaves, B. & Banting, G. Perturbation of the morphology of the trans-Golgi network following Brefeldin A treatment: redistribution of a TGN-specific integral membrane protein, TGN38. J. Cell Biol. 116, 85–94 ( 1992).

    Article  CAS  Google Scholar 

  25. Cluett, E. B. & Brown, W. J. Adhesion of Golgi cisternae by proteinaceous interactions: intercisternal bridges as putative adhesive structures. J. Cell Sci. 103, 773– 784 (1992).

    CAS  PubMed  Google Scholar 

  26. Nilsson, T. et al. Kin recognition between medial Golgi enzymes in HeLa cells. EMBO J. 13, 562–574 (1994).

    Article  CAS  Google Scholar 

  27. Zaal, K. J. et al. Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 99, 589– 601 (1999).

    Article  CAS  Google Scholar 

  28. Rowe, T. & Balch, W. E. Expression and purification of mammalian Sar1. Methods Enzymol. 257, 49 –53 (1995).

    Article  CAS  Google Scholar 

  29. Seemann, J., Jokitalo, E. J. & Warren, G. The role of the tethering proteins p115 and GM130 in transport through the Golgi apparatus in vivo. Mol. Biol. Cell 11, 635–645 ( 2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Shorter for his comments. This work was funded by the NIH and J.S. was supported by a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Warren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seemann, J., Jokitalo, E., Pypaert, M. et al. Matrix proteins can generate the higher order architecture of the Golgi apparatus. Nature 407, 1022–1026 (2000). https://doi.org/10.1038/35039538

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35039538

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing