Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Capitalizing on large-scale mouse mutagenesis screens

Variation is the crux of genetics. Mutagenesis screens in organisms from bacteria to fish have provided a battery of mutants that define protein functions within complex pathways. Large-scale mutation isolation has been carried out in Caenorhabditis elegans, Drosophila melanogaster and zebrafish, and has been recently reported in the mouse in two screens that have generated many new, clinically relevant mutations to reveal the power of phenotype-driven screens in a mammal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dominant screens to isolate new human disease models.
Figure 2: A three-generation breeding scheme without genetic markers to isolate recessive mutations.
Figure 3: A mouse balancer chromosome.
Figure 4: Isolating recessive detrimental mutations with a marked balancer chromosome.

References

  1. Capecchi, M. R. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Bellen, H. J. Ten years of enhancer detection: Lessons from the fly. The Plant Cell 11, 2271–2281 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zambrowicz, B. P. et al. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392, 608– 611 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Nolan, P. M. et al. A systematic genome-wide phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet. 25, 440–443 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Hrabe de Angelis, M. et al. Genome wide large scale production of mutant mice by ENU mutagenesis . Nature Genet. 25, 444– 447 (2000).References 4 and 5 describe the first large-scale ENU mutagenesis screens in the mouse.

    Article  CAS  PubMed  Google Scholar 

  6. Rogers, D. C. et al. SHIRPA, a proposed protocol for comprehensive phenotype assessment . Mamm. Genome 8, 711–713 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Dunn, L. C. Studies on spotting patterns. II. Genetic analysis of variegated spotting in the house mouse. Genetics 22, 43– 64 (1937).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Blake, J. A., Richardson, J. E., Davisson, M. T. & Eppig, J. T. The Mouse Genome Database (MGD): Genetic and genomic information about the laboratory mouse. The Mouse Genome Database Group. Nucleic Acids Res. 27, 95–98 ( 1999).This paper describes the features of the Mouse Genome Database (MGD) .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sarvella, P. A. & Russell, L. B. Steel, a new dominant gene in the house mouse. J. Hered. 47 , 123–128 (1956).

    Article  Google Scholar 

  10. Taylor, B. A., Navin, A. & Phillips, S. J. PCR-amplification of simple sequence repeat variants from pooled DNA samples for rapidly mapping new mutations of the mouse. Genomics 21, 626–632 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  11. Taylor, B. A. in Mouse Genetics and Transgenics: A Practical Approach (eds Jackson, I. J. & Abbott, C. M.) 87–120 (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  12. Nadeau, J. H. & Frankel, W. N. The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs. Nature Genet. 25, 381–384 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Anderson, P. Mutagenesis. Methods Cell Biol. 48, 31– 58 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Jansen, G., Hazendonk, E., Thijssen, K. L. & Plasterk, R. Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nature Genet. 17, 119–121 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Nusslein-Volhard, C., Wieschaus, E. & Kluding, H. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster I. Zygotic loci on the second chromosome . Roux's Archives Dev. Biol. 193, 267– 282 (1984).

    Article  CAS  Google Scholar 

  16. Wieschaus, E., Nusslein-Volhard, C. & Jurgens, G. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster III. Zygotic loci on the X-chromosome and fourth chromosome. Roux's Archives Dev. Biol. 193, 296–307 (1984).

    Article  CAS  Google Scholar 

  17. Jurgens, G., Wieschaus, E., Nusslein-Volhard, C. & Kluding, H. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster II. Zygotic loci on the third chromosome. Roux's Archives Dev. Biol. 193, 283–295 (1984).

    Article  CAS  Google Scholar 

  18. Gans, M., Audit, C. & Masson, M. Isolation and characterization of sex-linked female-sterile mutants in Drosophila melanogaster. Genetics 81, 683–704 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. Miklos, G. L. & Rubin, G. M. The role of the genome project in determining gene function: Insights from model organisms. Cell 86, 521–529 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  21. Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 ( 1996).

    CAS  PubMed  Google Scholar 

  22. Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37– 46 (1996).

    CAS  PubMed  Google Scholar 

  23. Postlethwait, J. H. et al. Vertebrate genome evolution and the zebrafish gene map. Nature Genet. 18, 345–349 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Amsterdam, A. et al. A large-scale insertional mutagenesis screen in zebrafish . Genes Dev. 13, 2713–2724 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hakim, F. T. et al. Hereditary joint disorder in progressive ankylosis (ank/ank ) mice. Arthritis Rheum. 27, 1411– 1420 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Ho, A. M., Johnson, M. D. & Kingsley, D. M. Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289, 265–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Battey, J., Jordan, E., Cox, D. & Dove, W. An action plan for mouse genomics. Nature Genet. 21, 73– 75 (1999).This paper explains the rationale for the trans-NIH mouse initiatives.

    Article  CAS  PubMed  Google Scholar 

  28. Denny, P. & Justice, M. J. Mouse as the measure of man? Trends Genet. 16, 283– 287 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Finkel, E. Australian `ranch' gears up to mass-produce mutant mice. Science 288, 1572–1573 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  30. Zheng, B., Mills, A. A. & Bradley, A. A system for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements in mice. Nucleic Acids Res. 27, 2354–2360 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng, B. et al. Engineering a balancer chromosome in the mouse. Nature Genet. 22, 375–378 ( 1999).A seminal paper that describes chromosomal engineering techniques to generate a coat-colour tagged balancer chromosome for genetic studies in the mouse.

    Article  CAS  PubMed  Google Scholar 

  32. Munro, R. J. et al. Mouse mutants from chemically mutagenized embryonic stem cells . Nature Genet. 24, 318– 321 (2000).

    Article  Google Scholar 

  33. Chen, Y. et al. Genotype-based screen for ENU-induced mutations in mouse embryonic stem cells. Nature Genet. 24, 314– 317 (2000).References 32 and 33 describe the use of point mutagens for gene-based screens in mouse embryonic stem cells.

    Article  CAS  PubMed  Google Scholar 

  34. Eppig, J. T. Algorithms for mutant sorting: The need for phenotype vocabularies. Mamm. Genome 11, 584–589 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Hitotsumachi, S., Carpenter, D. A. & Russell, W. L. Dose-repetition increases the mutagenic effectiveness of N-ethyl-N-nitrosourea in mouse spermatogonia. Proc. Natl Acad. Sci. USA 82, 6619– 6621 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shedlovsky, A., McDonald, J. D., Symula, D. & Dove, W. F. Mouse models of human phenylketonuria. Genetics 134 , 1205–1210 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Justice, M. J. in Mouse Genetics and Transgenics: A Practical Approach (eds Jackson, I. J. & Abbott, C. M.) 185–215 (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  38. Justice, M. J., Noveroske, J. N., Weber, J. S., Zheng, B. & Bradley, A. Mouse ENU mutagenesis. Human Genet. 8, 1955–1963 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks H. Bellen for the critical reading of this manuscript and for sharing his knowledge of the history and current status of Drosophila melanogaster genetics, and Andrew Sallinger for photographing the mice in Fig. 3. This work was supported by a United States Public Health Service grant.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Kit

Kitl

Whl

ank

Wnt3

FURTHER INFORMATION

UK ENU Mutagenesis programme

German ENU-mouse mutagenesis screen project

Drosophila stock centre

Mouse Genomics and Genetics Resources Committee

Australia

Canadian mutagenesis centre

Chris Goodnow at Australian National University

Baylor mouse genome project

The gene ontology project

Mouse Genome Database (MGD)

Glossary

GENE TRAPPING

A mutation strategy that uses insertion vectors to trap or isolate transcripts from flanking genes. The inserted sequence acts as a tag from which to clone the mutated gene.

ALLELIC SERIES

An array of possible mutant forms of a gene, which usually cause multiple phenotypes.

HYPOMORPH

A mutant allele that does not eliminate the wild-type function of a gene and may give a less severe phenotype than a loss-of-function mutant.

COMPLEMENTATION

When two mutations are combined in an organism and the phenotype is wild type, the mutations are said to complement each other.

ANTIMORPH

A mutant allele that antagonizes gene function and acts in a semi-dominant manner.

MISSENSE MUTATION

A mutation that results in the substitution of an amino acid in a protein.

NONSENSE MUTATION

A mutation that results in the introduction of a stop codon to cause the premature termination of the protein.

HAPLOINSUFFICIENT

A phenotype that arises in diploid organisms owing to the loss of one functional copy of a gene.

ELISA (ENZYME-LINKED IMMUNOSORBENT ASSAY.)

A sensitive antibody-based method for the detection of an antigen such as a protein.

BACKCROSS

The mating of an individual with its parent, or with an individual of the same genotype as its parent, to follow the inheritance of alleles and phenotypes.

DNA POOLING

A mapping strategy that pools DNA from phenotypically distinct backcross or intercross progeny to identify marker alleles that are linked to the genes that determine phenotype; it reduces the time and expense of genotyping individual mice from linkage crosses.

FORWARD GENETICS

A genetic analysis that proceeds from phenotype to genotype by positional cloning or candidate-gene analysis.

REVERSE GENETICS

A genetic analysis that proceeds from genotype to phenotype by gene-manipulation techniques, such as homologous recombination in ES cells.

PARTHENOGENESIS

The production of offspring by a female with no genetic contribution from a male.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Justice, M. Capitalizing on large-scale mouse mutagenesis screens. Nat Rev Genet 1, 109–115 (2000). https://doi.org/10.1038/35038549

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35038549

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing