Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Repressor activity of Headless/Tcf3 is essential for vertebrate head formation

Abstract

The vertebrate organizer can induce a complete body axis when transplanted to the ventral side of a host embryo1 by virtue of its distinct head and trunk inducing properties. Wingless/Wnt antagonists secreted by the organizer have been identified as head inducers2,3,4. Their ectopic expression can promote head formation, whereas ectopic activation of Wnt signalling during early gastrulation blocks head formation5,6,7. These observations suggest that the ability of head inducers to inhibit Wnt signalling during formation of anterior structures is what distinguishes them from trunk inducers that permit the operation of posteriorizing Wnt signals8. Here we describe the zebrafish headless (hdl) mutant and show that its severe head defects are due to a mutation in T-cell factor-3 (Tcf3), a member of the Tcf/Lef family9,10. Loss of Tcf3 function in the hdl mutant reveals that hdl represses Wnt target genes. We provide genetic evidence that a component of the Wnt signalling pathway is essential in vertebrate head formation and patterning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphological analysis.
Figure 2: Gene expression analyses.
Figure 3: Mapping of the hdl/tcf3 gene.
Figure 4: Rescue by Tcf3 expression.

Similar content being viewed by others

References

  1. Nieto, M. A. Reorganizing the organizer 75 years on. Cell 98, 417–425 (1999).

    Article  CAS  Google Scholar 

  2. Leyns, L., Bouwmeester, T., Kim, S. H., Piccolo, S. & De Robertis, E. M. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88, 747–756 (1997).

    Article  CAS  Google Scholar 

  3. Glinka, A. et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Piccolo, S. et al. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397, 707–710 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Christian, J. L. & Moon, R. T. Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev. 7, 13–28 (1993).

    Article  CAS  Google Scholar 

  6. Hoppler, S., Brown, J. D. & Moon, R. T. Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes Dev. 10, 2805–2817 (1996).

    Article  CAS  Google Scholar 

  7. Kelly, G. M., Greenstein, P., Erezyilmaz, D. F. & Moon, R. T. Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways. Development 121, 1787–1799 (1995).

    CAS  PubMed  Google Scholar 

  8. Niehrs, C. Head in the WNT: the molecular nature of Spemann's head organizer. Trends Genet. 15, 314–319 (1999).

    Article  CAS  Google Scholar 

  9. Molenaar, M. et al. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  Google Scholar 

  10. Pelegri, F. & Maischein, H. M. Function of zebrafish beta-catenin and TCF-3 in dorsoventral patterning. Mech. Dev. 77 , 63–74 (1998).

    Article  CAS  Google Scholar 

  11. Artinger, K. B., Chitnis, A. B., Mercola, M. & Driever, W. Zebrafish narrowminded suggests a genetic link between formation of neural crest and primary sensory neurons. Development 126, 3969–3979 (1999).

    CAS  PubMed  Google Scholar 

  12. Kim, C. H. et al. Zebrafish elav/HuC homologue as a very early neuronal marker. Neurosci. Lett. 216, 109– 112 (1996).

    Article  CAS  Google Scholar 

  13. Dattani, M. T. et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nature Genet. 19, 125–133 (1998).

    Article  CAS  Google Scholar 

  14. Kobayashi, M., Toyama, R., Takeda, H., Dawid, I. B. & Kawakami, K. Overexpression of the forebrain-specific homeobox gene six3 induces rostral forebrain enlargement in zebrafish. Development 125, 2973–2982 ( 1998).

    CAS  PubMed  Google Scholar 

  15. Mathers, P. H., Grinberg, A., Mahon, K. A. & Jamrich, M. The Rx homeobox gene is essential for vertebrate eye development. Nature 387, 603–607 ( 1997).

    Article  ADS  CAS  Google Scholar 

  16. Hashimoto, H. et al. Zebrafish Dkk1 functions in forebrain specification and axial mesendoderm formation. Dev. Biol. 217, 138 –152 (2000).

    Article  CAS  Google Scholar 

  17. Gates, M. A. et al. A genetic linkage map for zebrafish: comparative analysis and localization of genes and expressed sequences. Genome Res. 9, 334–347 ( 1999).

    CAS  PubMed  Google Scholar 

  18. Mullins, M. C., Hammerschmidt, M., Haffter, P. & Nusslein-Volhard, C. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol. 4, 189– 202 (1994).

    Article  CAS  Google Scholar 

  19. van de Wetering, M. et al. The human T cell transcription factor-1 gene. Structure, localization, and promoter characterization. J. Biol. Chem. 267, 8530–8536 (1992).

    CAS  PubMed  Google Scholar 

  20. Lin, R., Thompson, S. & Priess, J. R. pop-1 encodes an HMG box protein required for the specification of a mesoderm precursor in early C. elegans embryos. Cell 83, 599–609 (1995).

    Article  CAS  Google Scholar 

  21. van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997).

    Article  CAS  Google Scholar 

  22. Cavallo, R. A. et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395, 604– 608 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Roose, J. et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395, 608–612 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Brannon, M., Brown, J. D., Bates, R., Kimelman, D. & Moon, R. T. XCtBP is a XTcf-3 co-repressor with roles throughout Xenopus development. Development 126, 3159–3170 (1999).

    CAS  Google Scholar 

  25. Clevers, H. & van de Wetering, M. TCF/LEF factor earn their wings. Trends Genet. 13, 485– 489 (1997).

    Article  CAS  Google Scholar 

  26. Moon, R. T., Brown, J. D. & Torres, M. WNTs modulate cell fate and behavior during vertebrate development. Trends Genet. 13, 157– 162 (1997).

    Article  CAS  Google Scholar 

  27. McGrew, L. L., Takemaru, K., Bates, R. & Moon, R. T. Direct regulation of the Xenopus engrailed-2 promoter by the Wnt signaling pathway, and a molecular screen for Wnt-responsive genes, confirm a role for Wnt signaling during neural patterning in Xenopus. Mech. Dev. 87, 21–32 (1999).

    Article  CAS  Google Scholar 

  28. Badiani, P., Corbella, P., Kioussis, D., Marvel, J. & Weston, K. Dominant interfering alleles define a role for c-Myb in T-cell development. Genes Dev. 8, 770–782 (1994).

    Article  CAS  Google Scholar 

  29. Triezenberg, S. J., Kingsbury, R. C. & McKnight, S. L. Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev. 2, 718–729 ( 1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. T. Moon, R. Dorsky, T. Hirano, M. Hibi, A. Kawahara, L. Kodjabachian, D. Turner, M. Halpern and M. Kobayashi for constructs; M. Kacergis and G. Palardy for technical assistance; R. Subramanian and members of the Dawid lab for comments on the manuscript. The mutagenesis screen was performed at CVRC/MGH/Harvard Medical School. This work was supported by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay B. Chitnis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, CH., Oda, T., Itoh, M. et al. Repressor activity of Headless/Tcf3 is essential for vertebrate head formation. Nature 407, 913–916 (2000). https://doi.org/10.1038/35038097

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35038097

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing