Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Corpse clearance defines the meaning of cell death

Abstract

While philosophers seek the meaning of life, cell biologists are becoming ever more interested in the meaning of death. Apoptosis marks unwanted cells with 'eat me' signals that direct recognition, engulfment and degradation by phagocytes. Far from being the end of the story, these clearance events allow scavenger cells to confer meaning upon cell death. But if the phagocytic 'spin doctors' receive or transmit the wrong messages, trouble ensues.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The meaning coded into the phagocytic clearance of cells dying by apoptosis.
Figure 2: A human monocyte-derived macrophage ingests multiple apoptotic bodies.
Figure 3: Signalling the engulfment of dying cells in Caenorhabditis elegans .
Figure 4: The phagocyte recognition array in the mammalian clearance of apoptotic cells.

Similar content being viewed by others

References

  1. Kerr, J. F. R., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with widespread implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  Google Scholar 

  2. Savill, J. Apoptosis: phagocytic docking without shocking. Nature 392, 442–443 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Platt, N., da Silva, R. P. & Gordon, S. Recognising death: the phagocytosis of apoptotic cells . Trends Cell Biol. 8, 365– 372 (1998).

    Article  CAS  Google Scholar 

  4. Wu, Y. C. & Horvitz, H. R. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK 180. Nature 392, 501–504 ( 1998).

    Article  ADS  CAS  Google Scholar 

  5. Lui, Q. A. & Hengartner, M. O. Candidate adaptor protein CED-6 promotes the engulfment of apoptotic cells in C. elegans. Cell 93, 961–972 ( 1998).

    Article  Google Scholar 

  6. Wu, Y. C. & Horvitz, H. R. The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell 93, 951–960 ( 1998).

    Article  CAS  Google Scholar 

  7. Reddien, P. W. & Horvitz, H. R. CED-2/Crkll and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature Cell Biol. 2, 131–135 (2000).

    Article  CAS  Google Scholar 

  8. Fadok, V. A., Bratton, D. L., Frasch, S. C., Warner, M. L. & Henson, P. M. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 5, 557–563 ( 1998).

    Article  Google Scholar 

  9. Dini, L., Carla, E. C., Deluca, M., Faraldi, G. & Tagliafierro, G. Phagocytosis of apoptotic cells: liver recognition and molecular mechanisms. Ital. J. Zool. 66, 317–322 (1999).

    Article  CAS  Google Scholar 

  10. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nature Genet. 19, 56–59 (1998).

    Article  CAS  Google Scholar 

  11. Taylor, P. R. et al. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells. J. Exp. Med. 192 , 359–366 (2000).

    Article  CAS  Google Scholar 

  12. Mevorach, D., Mascarenhas, J. O., Gershov, D. & Elkon, K. B. Complement-dependent clearance of apoptotic cells by human macrophages. J. Exp. Med. 188, 2313–2320 (1998).

    Article  CAS  Google Scholar 

  13. Balasubramanian, K., Chandra, J. & Schroit, A. J. Immune clearance of phosphatidylserine-expressing cells by phagocytes. The role of β2-glycoprotein I in macrophage recognition . J. Biol. Chem. 272, 31113– 31117 (1997).

    Article  CAS  Google Scholar 

  14. Sambrano, G. R. & Steinberg, D. Recognition of oxidatively damaged and apoptotic cells by an oxidized low density lipoprotein receptor on mouse peritoneal macrophages: role of membrane phosphatidylserine . Proc. Natl Acad. Sci. USA 92, 1396– 1400 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Oka, K. et al. Lectin-like oxidized low-density lipoprotein receptor 1 mediates phagocytosis of aged/apoptotic cells in endothelial cells. Proc. Natl Acad. Sci. USA 95, 9535–9540 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Chang, M.-K. et al. Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition. Proc. Natl Acad. Sci. USA 96, 6353– 6358 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Moffatt, O. D., Devitt, A., Bell, E. D., Simmons, D. L. & Gregory, C. D. Macrophage recognition of ICAM-3 on apoptotic leukocytes . J. Immunol. 162, 6800– 6810 (1999).

    CAS  PubMed  Google Scholar 

  18. Devitt, A. et al. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 392, 505– 509 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Albert, M. L., Kim, J.-I. & Birge, R. B. The αvβ5 integrin recruits the CrkII/Dock180/Rac1 molecular complex for phagocytosis of apoptotic cells . Nature Cell Biol. (in press).

  20. Smits, E., Criekinge, W. V., Plaetinck, G. & Bogaert, T. The human homologue of Caenorhabditis elegans CED-6 specifically promotes phagocytosis of apoptotic cells. Curr. Biol. 9, 1351–1354 (1999).

    Article  CAS  Google Scholar 

  21. Marguet, D., Luciani, M. F., Moynault A., Williamson, P. & Chimini, G. Engulfment of apoptotic cells involves the redistribution of membrane phosphatidlyserine on phagocyte and prey. Nature Cell Biol. 1, 454–456 (1999).

    Article  CAS  Google Scholar 

  22. Hamon, Y. et al. ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nature Cell Biol. 2, 399–406 (2000).

    Article  CAS  Google Scholar 

  23. Franc, N. C., Heitzler, P., Ezekowitz, A. B. & White, K. Requirement for Croquemort in phagocytosis for apoptotic cells in Drosophila . Science 284, 1991– 1994 (1999).

    Article  CAS  Google Scholar 

  24. Platt, N., Suzuki, H., Kodama, T. & Gordon, S. Apoptotic thymocyte clearance in scavenger receptor class A-deficient mice is apparently normal . J. Immunol. 164, 4861– 4867 (2000).

    Article  CAS  Google Scholar 

  25. Meagher, L. C., Savill, J. S., Baker, A. & Haslett, C. Phagocytosis of apoptotic neutrophils does not induce macrophage release of thromboxane B2 . J. Leuk. Biol. 52, 269– 273 (1992).

    Article  CAS  Google Scholar 

  26. Voll, R. E., Herrmann, M., Roth, E. A., Stach, C. & Kalden, J. R. Immunosuppressive effects of apoptotic cells. Nature 390, 350– 351 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest. 101, 890–898 ( 1998).

    Article  CAS  Google Scholar 

  28. Fadok, V. A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90 (2000).

    Article  ADS  CAS  Google Scholar 

  29. Stern, M., Savill, J. & Haslett, C. Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis: mediation by αvβ3/CD36 thrombospondin recognition mechanism and lack of phlogistic response. Am. J. Pathol. 149, 911–921 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Manfredi, A. A. et al. Apoptotic cell clearance in systemic lupus erythematosus. I. Opsonization by antiphospholipid antibodies. Arth. Rheum. 41, 205–214 (1998).

    Article  CAS  Google Scholar 

  31. DiezRouz, G. & Lang, R. A. Macrophages induce apoptosis in normal cells in vivo. Development 124, 3633–3638 (1997).

    Google Scholar 

  32. Duffield, J. A. et al. Activated macrophages direct apoptosis and suppress mitosis of mesangial cells. J. Immunol. 164, 2110 –2119 (2000).

    Article  CAS  Google Scholar 

  33. Reiter, I., Krammer, B. & Schwamberger, G. Differential effect of apoptotic versus necrotic tumor cells on macrophage antitumor activities. J. Immunol. 163, 1730–1732 (1999).

    CAS  PubMed  Google Scholar 

  34. Freire-de-Lima, C. G. et al. Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature 403, 199–203 (2000).

    Article  ADS  CAS  Google Scholar 

  35. Brown, S. B. & Savill, J. Phagocytosis triggers macrophage release of Fas ligand and induces apoptosis of bystander leukocytes. J. Immunol. 162, 480–485 (1999).

    CAS  PubMed  Google Scholar 

  36. Rubartelli, A., Foggi, A. & Zocchi, M. K. The selective engulfment of apoptotic bodies by dendritic cells is mediated by the αvβ3 integrin and requires intracellular and extracellular calcium. Eur. J. Immunol. 27, 1893–1900 (1997).

    Article  CAS  Google Scholar 

  37. Bellone, M. et al. Processing of engulfed apoptotic bodies yields T cell epitopes . J. Immunol. 159, 5391– 5399 (1997).

    CAS  PubMed  Google Scholar 

  38. Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998).

    Article  ADS  CAS  Google Scholar 

  39. Steinman, R. M., Turley, S., Mellman, I. & Inaba, K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med. 191, 411–416 (2000).

    Article  CAS  Google Scholar 

  40. Albert, M. L. et al. Immature dendritic cells phagocytose apoptotic cells via α vβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. 188, 1359– 1368 (1998).

    Article  CAS  Google Scholar 

  41. Mevorach, D., Zhou, J. L., Song, X. & Elkon, K. B. Systemic exposure to irradiated apoptotic cells induces autoantibody production. J. Exp. Med. 188, 387–392 (1998).

    Article  CAS  Google Scholar 

  42. Casciola-Rosen, L. A., Annhalt, G. J. & Rosen, A. DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J. Exp. Med. 182, 1625–1634 (1995).

    Article  CAS  Google Scholar 

  43. Huang, F.-P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–443 (2000).

    Article  CAS  Google Scholar 

  44. Nakamura, K. et al. Unresponsiveness of peripheral T cells induced by apoptotic bodies derived from autologous T cells. Cell. Immunol. 193, 147–154 (1999).

    Article  CAS  Google Scholar 

  45. Rovere, P. et al. Bystander apoptosis triggers dendritic cell maturation and antigen-presenting function. J. Immunol. 161, 4467–4471 (1998).

    CAS  PubMed  Google Scholar 

  46. Liu, Y. et al. Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J. Immunol. 162, 3639– 3646 (1999).

    CAS  PubMed  Google Scholar 

  47. Godson, C. et al. Lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J. Immunol. 164, 1663–1667 (2000).

    Article  CAS  Google Scholar 

  48. Frasch, S. C. et al. Regulation of phospholipid scramblase activity during apoptosis and cell activation by protein kinase C δ. J. Biol. Chem. 275, 23065–23073 ( 2000).

    Article  CAS  Google Scholar 

  49. Wiedmer, T., Zhou, Q., Kwoh, D. Y. & Sims, P. J. Identification of three new members of the phospholipid scramblase gene family. Biochim. Biophys. Acta 1467, 244–253 (2000).

    Article  CAS  Google Scholar 

  50. Ren, Y., Silverstein, R. L., Allen, J. & Savill, J. CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis . J. Exp. Med. 181, 1857– 1862 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the many scientists working in the field, especially those whose work could not be cited because of space constraints; we also thank C. Gilchrist for secretarial assistance. Support from the Wellcome Trust, the Medical Research Council, the National Kidney Research Fund and the National Institutes of Health is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Savill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savill, J., Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000). https://doi.org/10.1038/35037722

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35037722

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing