Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Patterning of polymer-supported metal films by microcutting

Abstract

The ability to micropattern materials is of great importance for manufacturing advanced electronic, optical and mechanical devices ranging from displays to biosensors1,2,3,4,5,6. For this purpose a variety of methods have been developed, including X-ray, electron-beam and photo-lithography7,8, microcontact printing9, embossing10,11, micromoulding8,12 and cold welding13. But these techniques are often of restricted applicability, involve a multitude of elaborate and cumbersome processing steps, or require aggressive chemistry. Here we describe a simple and versatile way to create well resolved metallic structures on polymer substrates, which is based on solid-state embossing of metal-coated polymer films. Ductility of both the metal layer and the polymer substrate permits the metal to be cut into surprisingly regular, micrometre-size structures. We illustrate the method by preparing patterned electrically conducting structures, highly efficient infrared polarizers and polarization-dependent colour filters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of the microcutting procedure of metal-coated polymer substrates.
Figure 2: ESE micrographs of microcut metal/poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) bilayer structures revealing various aspects of the process (a f).
Figure 3: Diagram of a wedge (grey) penetrating without friction a rigid, perfectly plastic body after ref. 21.
Figure 4: Illustrations of various optical properties of microcut metal/polymer films.

Similar content being viewed by others

References

  1. Rogers, J. A., Bao, Z. & Raju, V. R. Nonphotolithographic fabrication of organic transistors with micron feature sizes. Appl. Phys. Lett. 72, 2716–2718 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Gale, M. T., Kane, J. & Knop, K. ZOD images: Embossable surface-relief structures for color and black-and-white reproduction. J. Appl. Photo. Eng. 4, 41 –47 (1978).

    Google Scholar 

  3. Auton, J. P. Infrared transmission polarizers by photolithography. Appl. Opt. 6, 1023–1027 ( 1967).

    Article  ADS  CAS  Google Scholar 

  4. Chan, V. Z.-H. et al. Ordered bicontinuous nanoporous and nanorelief ceramic films from self-assembling polymer precursors. Science 286 , 1716–1719 (1999).

    Article  CAS  Google Scholar 

  5. Gau, H., Herminghaus, S., Lenz, P. & Lipowsky, R. Liquid morphologies on structured surfaces: From microchannels to microchips. Science 283, 46–49 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Kataoka, D. E. & Troian, S. M. Patterning liquid flow on the microscopic scale. Nature 402, 794– 797 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Moreau, W. M. Semiconductor Lithography (Plenum, New York, 1988).

    Book  Google Scholar 

  8. Madou, M. Fundamentals of Microfabrication (CRC Press, Boca Raton, 1997).

    Google Scholar 

  9. Kumar, A. & Whitesides, G. M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alakanethiol “ink” followed by chemical etching. Appl. Phys. Lett. 63, 2002– 2004 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Gale, M. T. Replication technology for holograms and diffractive optical elements. J. Imag. Sci. 41, 211–220 (1997).

    CAS  Google Scholar 

  11. Stutzmann, N., Tervoort, T. A., Bastiaansen, C., Feldmann, K. & Smith, P. Solid-state replication of relief structures in semi-crystalline polymers. Adv. Mater 12, 557–562 (2000).

    Article  CAS  Google Scholar 

  12. Kim, E., Xia, Y. & Whitesides, G. M. Polymer microstructures formed by moulding in capillaries. Nature 376, 581–584 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Kim, C., Burrows, P. E. & Forrest, S. R. Micropatterning of organic electronic devices by cold-welding. Science 288, 831– 833 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Echlin, P. Recent advances in specimen coating techniques. Scanning Electron Microsc. 14, 79–90 ( 1981).

    Google Scholar 

  15. Bråten, T. High resolution scanning electron microscopy in biology: Artefacts caused by the nature and mode of application of the coating material. J. Microsc. 113, 53–59 ( 1978).

    Article  Google Scholar 

  16. Petch, N. J. The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953).

    CAS  Google Scholar 

  17. Hall, E. O. The deformation and ageing of mild steel: III Discussion of results. Proc. Phys. Soc. Lond. B 64, 747–753 (1951).

    Article  ADS  Google Scholar 

  18. Gerenser, L. J. in Metallization of Polymers (eds Sacher, E., Pireaux, J.-J. & Kowalczyk, S. P.) 433–452 (American Chemical Society, Washington, 1990).

    Book  Google Scholar 

  19. Gerenser, L. J. in Metallized Plastics: Fundamentals and Applications (ed. Mittal, K. L.) 113–128 (Marcel Dekker, New York, 1993).

    Google Scholar 

  20. Sacher, E. in Metallization of Polymers (eds Sacher, E., Pireaux, J.-J. & Kowalczyk, S. P.) 1–7 (American Chemical Society, Washington, 1990).

    Google Scholar 

  21. Hill, R., Lee, E. H. & Tupper, S. J. The theory of wedge indentation of ductile materials. Proc. R. Soc. A 188, 273– 289 (1947).

    ADS  MathSciNet  Google Scholar 

  22. Chechenin, N. G., Bottiger, J. & Krog, J. P. Nanoindentation of amorphous aluminium-oxide films II. Critical parameters for the breakthrough and a membrane effect in thin hard films on soft substrates. Thin Solid Films 261 , 228–235 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Pivin, J. C., Lebouvier, D., Pollock, H. M. & Felder, E. Fields of plastic deformation in indented bilayers: Comparison between kinematic calculations and experimental data obtained at scales ranging from one centimetre to ten nanometres. J. Phys. D 22, 1443– 1450 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Bennett, J. M. & Bennett, H. E. in Handbook of Optics (eds Driscoll, W. G. & Vaughan, W.) Ch. 10 (McGraw-Hill, New York, 1978).

    Google Scholar 

  25. Dirix, Y., Tervoort, T. A. & Bastiaansen, C. Optical properties of oriented polymer/dye polarizers. Macromolecules 28, 586– 491 (1995).

    Article  Google Scholar 

  26. Dirix, Y., Tervoort, T. A. & Bastiaansen, C. Optical properties of oriented polymer/dye polarizers. 2. Ultimate properties. Macromolecules 30, 2175–2177 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Dirix, Y., Bastiaansen, C., Caseri, W. & Smith, P. Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route towards polarization-dependent color filters. Adv. Mater. 11, 223–227 ( 1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Schmit for performing environmental scanning electron microscopy and L. Fall for assistance with infrared spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo A. Tervoort.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stutzmann, N., Tervoort, T., Bastiaansen, K. et al. Patterning of polymer-supported metal films by microcutting. Nature 407, 613–616 (2000). https://doi.org/10.1038/35036545

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036545

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing