Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Peroxynitrite reductase activity of bacterial peroxiredoxins

Abstract

Nitric oxide (NO) is present in soil and air, and is produced by bacteria, animals and plants. Superoxide (O-2) arises in all organisms inhabiting aerobic environments. Thus, many organisms are likely to encounter peroxynitrite (OONO-), a product of NO and O-2 that forms at near diffusion-limited rates, and rapidly decomposes upon protonation through isomerization to nitrate (NO-3; ref. 1) while generating hydroxyl radical (.OH) and nitrogen dioxide radical (.NO2) (refs 2, 3), both more reactive than peroxynitrite's precursors. The oxidative, inflammatory, mutagenic and cytotoxic potential (ref. 4) of peroxynitrite contrasts with the anti-oxidant, anti-inflammatory and tissue-protective properties ascribed to NO itself5. Thus, the ability of cells to cope with peroxynitrite is central in determining the biological consequences of NO production. We considered whether cells might be equipped with enzymes to detoxify peroxynitrite. Peroxiredoxins have been identified in most genomes sequenced, but their functions are only partly understood. Here we show that the peroxiredoxin alkylhydroperoxide reductase subunit C (AhpC) from Salmonella typhimurium catalytically detoxifies peroxynitrite to nitrite fast enough to forestall the oxidation of bystander molecules such as DNA. Results are similar with peroxiredoxins from Mycobacterium tuberculosis and Helicobacter pylori. Thus, peroxynitrite reductase activity may be widespread among bacterial genera.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AhpC from S. typhimurium protects dihydrorhodamine and DNA from peroxynitrite-induced oxidation.
Figure 2: Catabolism of peroxynitrite by AhpC.
Figure 3: Sulphenic acid formation at Cys 46 in peroxynitrite-treated AhpC: identification by electrospray ionization mass spectrometry.
Figure 4: Kinetics of peroxynitrite catabolism by bacterial AhpC.

Similar content being viewed by others

References

  1. Pfeiffer, S. et al. Metabolic fate of peroxynitrite in aqueous solution. Reaction with nitric oxide and pH-dependent decomposition to nitrite and oxygen in a 2:1 stoichiometry. J. Biol. Chem. 272, 3465–3470 (1997).

    Article  CAS  Google Scholar 

  2. Coddington, J. W., Hurst, J. K. & Lymar, S. V. Hydroxyl radical formation during peroxynitrous acid decomposition. J. Am. Chem. Soc. 121, 2438 –2443 (1999).

    Article  CAS  Google Scholar 

  3. Merényi, G., Lind, J., Goldstein, S. & Czapski, G. Peroxynitrous acid homolyzes into .OH and .NO2 radicals. Chem. Res. Toxicol. 11, 712– 713 (1998).

    Article  Google Scholar 

  4. Niles, J. C., Burney, S., Singh, S. P., Wishnok, J. S. & Tannenbaum, S. R. Peroxynitrite reaction products of 3′,5′-di-O-acetyl-8-oxo-7,8-dihydro-2′-deoxyguanosine. Proc. Natl Acad. Sci. USA 96, 11729– 11734 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Wink, D. A. et al. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc. Natl Acad. Sci. USA 90, 9813–9817 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Jin, D.-Y. & Jeang, K.-T. in Antioxidation and Redox Regulation of Genes (eds Sen, C. K., Sies, H. & Baeuerle, P. A.) 381– 407 (Academic, New York, 2000).

    Book  Google Scholar 

  7. Storz, G. et al. An alkyl hydroperoxide reductase induced by oxidative stress in Salmonella typhimurium and Escherichia coli: genetic characterization and cloning of ahp. J. Bacteriol. 171, 2049–2055 (1989).

    Article  CAS  Google Scholar 

  8. Chen, L., Xie, Q. & Nathan, C. Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol. Cell 1, 795–805 (1998).

    Article  CAS  Google Scholar 

  9. Nathan, C. & Shiloh, M. U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl Acad. Sci. USA 97, 8844– 8848 (2000).

    Article  ADS  Google Scholar 

  10. Wilson, T., de Lisle, G. W., Marcinkeviciene, J. A., Blanchard, J. S. & Collins, D. M. Antisense RNA to ahpC, an oxidative stress defence gene involved in isoniazid resistance, indicates that AhpC of Mycobacterium bovis has virulence properties. Microbiology 144, 2687– 2695 (1998).

    Article  CAS  Google Scholar 

  11. Szabo, C., Zingarelli, B., O'Connor, M. & Salzman, A. L. DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc. Natl Acad. Sci. USA 93, 1753–1758 ( 1996).

    Article  ADS  CAS  Google Scholar 

  12. Ellis, H. R. & Poole, L. B. Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium. Biochemistry 36 , 13349–13356 (1997).

    Article  CAS  Google Scholar 

  13. Ellis, H. R. & Poole, L. B. Novel application of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase. Biochemistry 36, 15013– 15018 (1997).

    Article  CAS  Google Scholar 

  14. Claiborne, A. et al. Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38, 15407–15416 (1999).

    Article  CAS  Google Scholar 

  15. Briviba, K., Kissner, R., Koppenol, W. H. & Sies, H. Kinetic study of the reaction of glutathione peroxidase with peroxynitrite. Chem. Res. Toxicol. 11, 1398– 1401 (1998).

    Article  CAS  Google Scholar 

  16. Pearce, L. L., Pitt, B. R. & Peterson, J. The peroxynitrite reductase activity of cytochrome c oxidase involves a two-electron redox reaction at the heme a (3)-Cu(B) site. J. Biol. Chem. 274, 35763– 35767 (1999).

  17. Sherman, D. R. et al. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272, 1641–1643 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Yu, K. et al. Toxicity of nitrogen oxides and related oxidants on mycobacteria : M. tuberculosis is resistant to peroxynitrite anion. Tuber. Lung Dis. 79, 191–198 ( 1999).

    Article  CAS  Google Scholar 

  19. Choi, H.-J., Kang, S. W., Yang, C.-H., Rhee, S. G. & Ryu, S.-E. Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution. Nature Struct. Biol. 5, 400–406 (1998).

    Article  CAS  Google Scholar 

  20. Becker, K., Savvides, S. N., Keese, M., Schirmer, R. H. & Karplus, P. A. Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers. Nature Struct. Biol. 5, 267–271 (1998).

    Article  CAS  Google Scholar 

  21. Radi, R., Beckman, J. S., Bush, K. M. & Freeman, B. A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 4244 –4250 (1991).

    CAS  PubMed  Google Scholar 

  22. Beckman, J. S. & Koppenol, W. H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271, C1424–C1437 (1996).

    Article  CAS  Google Scholar 

  23. Go, Y. M. et al. Evidence for peroxynitrite as a signaling molecule in flow-dependent activation of c-Jun NH(2)-terminal kinase. Am. J. Physiol. 277, H1647–H1653 (1999).

    CAS  PubMed  Google Scholar 

  24. Kamisaki, Y. et al. An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc. Natl Acad. Sci. USA 95, 11584–11589 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Denu, J. M. & Tanner, K. G. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37, 5633–5642 ( 1998).

    Article  CAS  Google Scholar 

  26. Koppenol, W. H., Kissner, R. & Beckman, J. S. Synthesis of peroxynitrite: to go with the flow or on solid grounds? Methods Enzymol. 269, 296–302 (1996).

    Article  CAS  Google Scholar 

  27. Uppu, R. M. & Pryor, W. A. Biphasic synthesis of high concentrations of peroxynitrite using water-insoluble alkyl nitrite and hydrogen peroxide. Methods Enzymol. 269, 322– 329 (1996).

    Article  CAS  Google Scholar 

  28. Poole, L. B. & Ellis, H. R. Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins. Biochemistry 35, 56–64 ( 1996).

    Article  CAS  Google Scholar 

  29. O'Toole, P. W., Logan, S. M., Kostrzynska, M., Wadstrom, T. & Trust, T. J. Isolation and biochemical and molecular analyses of a species-specific protein antigen from the gastric pathogen Helicobacter pylori. J. Bacteriol. 173, 505–513 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Chen for generating ahpC mutations, G. St John for the H. pylori clone, H. Erdjument-Bromage and P. Tempst for protein sequencing and T. Sakmar for access to his stopped-flow spectrophotometer. This work was supported by a Norman and Rosita Winston fellowship (R.B.) and by an NIH grant (C.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Nathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryk, R., Griffin, P. & Nathan, C. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407, 211–215 (2000). https://doi.org/10.1038/35025109

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35025109

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing