Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Topological restriction of SNARE-dependent membrane fusion

Abstract

To fuse transport vesicles with target membranes, proteins of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex must be located on both the vesicle (v-SNARE) and the target membrane (t-SNARE)1. In yeast, four integral membrane proteins, Sed5, Bos1, Sec22 and Bet1 (refs 2, 3,4,5,6), each probably contribute a single helix to form the SNARE complex that is needed for transport from endoplasmic reticulum to Golgi7,8,9,10,11. This generates a four-helix bundle12, which ultimately mediates the actual fusion event13. Here we explore how the anchoring arrangement of the four helices affects their ability to mediate fusion. We reconstituted two populations of phospholipid bilayer vesicles, with the individual SNARE proteins distributed in all possible combinations between them. Of the eight non-redundant permutations of four subunits distributed over two vesicle populations, only one results in membrane fusion. Fusion only occurs when the v-SNARE Bet1 is on one membrane and the syntaxin heavy chain Sed5 and its two light chains, Bos1 and Sec22, are on the other membrane where they form a functional t-SNARE. Thus, each SNARE protein is topologically restricted by design to function either as a v-SNARE or as part of a t-SNARE complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sed5, Bos1, Sec22 and Bet1 form a quaternary complex.
Figure 2: ER–Golgi SNAREs do not cause fusion when reconstituted into liposomes in a 2:2 fashion.
Figure 3: ER–Golgi SNAREs can fuse lipid membranes when reconstituted asymmetrically into liposomes.
Figure 4: A trimeric t-SNARE and monomeric v-SNARE is required for membrane fusion.
Figure 5: ER–Golgi v-SNARE/t-SNARE complex is a substrate for Sec17/Sec18.

Similar content being viewed by others

References

  1. Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Article  ADS  Google Scholar 

  2. Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205–215 ( 1980).

    Article  CAS  Google Scholar 

  3. Newman, A. P. & Ferro-Novick, S. Characterization of new mutants in the early part of the yeast secretory pathway isolated by a [3H]mannose suicide selection. J. Cell Biol. 105, 1587 –1594 (1987).

    Article  CAS  Google Scholar 

  4. Shim, J., Newman, A. P. & Ferro-Novick, S. The BOS1 gene encodes an essential 27-kD putative membrane protein that is required for vesicular transport from the ER to the Golgi complex in yeast. J. Cell Biol. 113, 55–64 (1991).

    Article  CAS  Google Scholar 

  5. Dascher, C., Ossig, R., Gallwitz, D. & Schmitt, H. D. Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily. Mol. Cell. Biol. 11, 872–885 ( 1991).

    Article  CAS  Google Scholar 

  6. Hardwick, K. G. & Pelham, H. R. SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex. J. Cell Biol. 119, 513–521 (1992).

    Article  CAS  Google Scholar 

  7. Newman, A. P., Shim, J. & Ferro-Novick, S. BET1, BOS1, and SEC22 are members of a group of interacting yeast genes required for transport from the endoplasmic reticulum to the Golgi complex. Mol. Cell. Biol. 10 , 3405–3414 (1990).

    Article  CAS  Google Scholar 

  8. Søgaard, M. et al. A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 78, 937–948 (1994).

    Article  Google Scholar 

  9. Lian, J. P., Stone, S., Jiang, Y., Lyons, P. & Ferro-Novick, S. Ypt1p implicated in v-SNARE activation. Nature 372, 698–701 ( 1994).

    Article  ADS  CAS  Google Scholar 

  10. Stone, S. et al. Bet1p activates the v-SNARE Bos1p. Mol. Biol. Cell 8, 1175–1181 ( 1997).

    Article  CAS  Google Scholar 

  11. Sacher, M., Stone, S. & Ferro-Novick, S. The synaptobrevin-related domains of Bos1p and Sec22p bind to the syntaxin-like region of Sed5p. J. Biol. Chem. 272, 17134–17138 (1997).

    Article  CAS  Google Scholar 

  12. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347–353 ( 1998).

    Article  ADS  CAS  Google Scholar 

  13. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 ( 1998).

    Article  CAS  Google Scholar 

  14. Parlati, F. et al. Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc. Natl Acad. Sci. USA 96, 12565 –12570 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Fukuda, R. et al. Functional architecture of an intracellular t-SNARE. Nature 407, 198–202 ( 2000).

    Article  ADS  CAS  Google Scholar 

  16. Cao, X. & Barlowe, C. Asymmetric requirements for a Rab GTPase and SNARE proteins in fusion of COPII vesicles with acceptor membranes. J. Cell Biol. 149, 55– 66 (2000).

    Article  CAS  Google Scholar 

  17. Rexach, M. F., Latterich, M. & Schekman, R. W. Characteristics of endoplasmic reticulum-derived transport vesicles. J. Cell Biol. 126, 1133 –1148 (1994).

    Article  CAS  Google Scholar 

  18. Boehm, J., Ulrich, H. D., Ossig, R. & Schmitt, H. D. Kex2-dependent invertase secretion as a tool to study the targeting of transmembrane proteins which are involved in ER→Golgi transport in yeast. EMBO J. 13, 3696–3710 ( 1994).

    Article  CAS  Google Scholar 

  19. Barrowman, J., Sacher, M. & Ferro-Novick, S. TRAPP stably associates with the Golgi and is required for vesicle docking. EMBO J. 19, 862– 869 (2000).

    Article  CAS  Google Scholar 

  20. Nichols, B. J., Ungermann, C., Pelham, H. R., Wickner, W. T. & Haas, A. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 387, 199– 202 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A protein assembly–disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).

    Article  Google Scholar 

  22. Weber, T. et al. SNAREpins are functionally resistant to disruption by N-ethylmaleimide–sensitive fusion protein (NSF) and α-soluble NSF attachment protein (SNAP). J. Cell Biol. 149 (2000).

  23. McNew, J. A., Weber, T., Engelman, D. M., Sollner, T. H. & Rothman, J. E. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol. Cell 4, 415–421 (1999).

    Article  CAS  Google Scholar 

  24. McNew, J. A. et al. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J. Cell Biol. 150, 105–118 (2000).

    Article  CAS  Google Scholar 

  25. McNew, J. A. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proetins. Nature 407, 153– 159 (2000).

    Article  ADS  CAS  Google Scholar 

  26. Fasshauer, D., Antonin, W., Margittai, M., Pabst, S. & Jahn, R. Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J. Biol. Chem. 274, 15440–15446 ( 1999).

    Article  CAS  Google Scholar 

  27. Yang, B. et al. SNARE interactions are not selective. Implications for membrane fusion specificity. J. Biol. Chem. 274, 5649–5653 (1999).

    Article  CAS  Google Scholar 

  28. Mellman, I. & Warren, G. The road taken: past and future foundations of membrane traffic. Cell 100, 99– 112 (2000).

    Article  CAS  Google Scholar 

  29. McNew, J. A. et al. Gos1p, a Saccharomyces cerevisiae SNARE protein involved in Golgi transport. FEBS Lett. 435, 89– 95 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Whiteheart, S. W. et al. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol. 126, 945–954 ( 1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank R. J. Johnston for technical support. Research was supported by an NIH grant (to J.E.R.) and postdoctoral fellowships of the Medical Research Council of Canada (F.P.), the NIH (J.M.) and the Japanese Society for the Promotion of Science (R.F.).

Author information

Authors and Affiliations

Authors

Additional information

Cellular Biochemistry and Biophysics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box251New York, New York 10021, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parlati, F., McNew, J., Fukuda, R. et al. Topological restriction of SNARE-dependent membrane fusion. Nature 407, 194–198 (2000). https://doi.org/10.1038/35025076

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35025076

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing