Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice

Abstract

Lysosome-associated membrane protein-2 (LAMP-2) is a highly glycosylated protein and an important constituent of the lysosomal membrane1,2,3,4,5,6,7. Here we show that LAMP-2 deficiency in mice increases mortality between 20 and 40 days of age. The surviving mice are fertile and have an almost normal life span. Ultrastructurally, there is extensive accumulation of autophagic vacuoles in many tissues including liver, pancreas, spleen, kidney and skeletal and heart muscle. In hepatocytes, the autophagic degradation of long-lived proteins is severely impaired. Cardiac myocytes are ultrastructurally abnormal and heart contractility is severely reduced. These findings indicate that LAMP-2 is critical for autophagy. This theory is further substantiated by the finding that human LAMP-2 deficiency8 causing Danon's disease is associated with the accumulation of autophagic material in striated myocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LAMP-2 deficiency causes increased mortality and loss of weight.
Figure 2: Accumulation of autophagic vacuoles in LAMP-2 deficient tissues.
Figure 3: Skeletal and cardiac muscles of a 19-month-old LAMP-2-deficient mouse.
Figure 4: Accumulation of autophagic vacuoles and prolonged half-time of long-lived proteins in LAMP-2-deficient hepatocyte cultures.

Similar content being viewed by others

References

  1. Granger, B. L. et al. Characterisation and cloning of the lgp 110, a lysosomal glycoprotein from mouse and rat cells. J. Biol. Chem. 265, 12036–12043 (1990).

    CAS  PubMed  Google Scholar 

  2. Cha, Y., Holland, S. M. & August, J. T. The cDNA sequence of mouse LAMP-2. Evidence for two classes of lysosomal membrane glycoproteins. J. Biol. Chem. 265, 5008–5013 (1990).

    CAS  PubMed  Google Scholar 

  3. Konecki, D. S., Foetisch, K., Zimmer, K. P., Schlotter, M. & Lichter-Konecki, U. An alternatively spliced form of the human lysosome-associated membrane protein-2 gene is expressed in a tissue-specific manner. Biochem. Biophys. Res. Commun. 215, 757–767 (1995).

    Article  CAS  Google Scholar 

  4. Aumüller,G., Renneberg, H. & Hasilik, A. Distribution and subcellular localisation of lysosomal-associated protein in human genital organs. Cell Tissue Res. 287 , 335–342 (1997).

    Article  Google Scholar 

  5. Fambrough, D. M., Takeyasu, K., Lippincott-Schwartz, J. & Siegel, N. R. Structure of LEP 100, a glycoprotein that shuttles between lysosomes and the plasma membrane, deduced from the nucleotide sequence of the encoding DNA. J. Cell. Biol. 106, 61– 67 (1988).

    Article  CAS  Google Scholar 

  6. Lewis, V. et al. Glycoproteins of the lysosomal membrane. J. Cell Biol. 100, 1839–1847 ( 1985).

    Article  CAS  Google Scholar 

  7. Fukuda, M. Lysosomal membrane glycoproteins. J. Biol. Chem. 266 , 21327–21330 (1991).

    CAS  Google Scholar 

  8. Nishino, I. et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon's disease). Nature 406, 906–910 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Andrejewski, N. et al. Normal lysosomal morphology and function in Lysosomal-Associated-Membrane-Protein-Type-1 (LAMP-1) deficient mice. J. Biol. Chem. 274, 12692–12701 (1999).

    Article  CAS  Google Scholar 

  10. Dunn, W. A. Studies on the mechanisms of autophagy: Formation of the autophagic vacuole. J. Cell Biol. 110, 1923– 1933 (1990).

    Article  Google Scholar 

  11. Liou, W., Geuze, H. J., Geelen, M. J. & Slot, J. W. The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J. Cell Biol. 136, 61– 70 (1997).

    Article  CAS  Google Scholar 

  12. Anderson, R. G. Postembedding detection of acidic compartments. Methods Cell Biol. 31, 463–472 ( 1989).

    Article  CAS  Google Scholar 

  13. Arstila, A. U. & Trump, B. F. Studies on cellular autophagocytosis. The formation of autophagic vacuoles in the liver after glucagon administration. Am. J. Pathol. 53, 687–733 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Seglen, P. O. & Gordon, P. B. Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes. J. Cell Biol. 99, 435–444 (1984).

    Article  CAS  Google Scholar 

  15. Henell, F., Berkenstam, A., Ahlberg, J. & Glaumann, H. Degradation of short- and long-lived proteins in perfused liver and in isolated autophagic vacuoles—lysosomes. Exp. Mol. Pathol. 46, 1–14 (1987).

    Article  CAS  Google Scholar 

  16. Seglen, P. O. & Gordon, P. B. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl Acad. Sci. USA 79, 1889– 1892 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Danon, M. J. et al. Lysosomal glycogen storage disease with normal acid maltase. Neurology 31, 51–57 (1981).

    Article  CAS  Google Scholar 

  18. Muntoni, F. et al. Familial cardiomyopathy, mental retardation and myopathy associated with desmin-type intermediate filaments. Neuromuscul. Disord. 4, 233–241 (1994).

    Article  CAS  Google Scholar 

  19. Morisawa, Y. et al. Lysosomal glycogen storage disease with normal acid maltase with early fatal outcome. J. Neurol. Sci. 160, 175–179 (1998).

    Article  CAS  Google Scholar 

  20. Town, M. et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nature Genet. 18, 319–324 (1998).

    Article  CAS  Google Scholar 

  21. Verheijen, F., et al. A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nature Genet. 23, 462–465 (1999)

    Article  CAS  Google Scholar 

  22. Cuervo, A. M. & Dice, J. F. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273 , 501–503 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Köster, A. et al. Targeted disruption of the M(r) 46,000 mannose 6-phosphate receptor gene in mice results in misrouting of lysosomal proteins. EMBO J. 12, 5219–5223 ( 1993).

    Article  Google Scholar 

  24. Isbrandt, D. et al. Mucopolysaccharidosis VI (Maroteaux-Lamy syndrome): six unique arylsulfatase B gene alleles causing variable disease phenotypes. Am. J. Hum. Genet. 54, 454–463 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Meredith, M. J. Rat hepatocytes prepared without collagenase: Prolonged retention of differentiated characteristics in culture. Cell Biol. Toxicol. 4, 405–425 (1988).

    Article  CAS  Google Scholar 

  26. Janssen, P. M. L. & Hunter, W. C. Force, not sarcomere length, correlates with prolongation of isosarcometric contraction. Am. J. Physiol. 269, H676–H685 (1995 ).

Download references

Acknowledgements

We thank N. Leister, A. Wais, M. Grell, G. Jopp and D. Niemeier for technical assistance; K. Rajewski for the E-14-1 cell line; and O. Schunck and K. Nebendahl for veterinary advice. Y.T. was supported in part by the Mochida Memorial Foundation for Medical and Pharmaceutical Research and the Yamanouchi Foundation for Research on Metabolic Disorders. A.S. was supported by a fellowship of the Boehringer Ingelheim Fonds. This work was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Saftig.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, Y., Guhde, G., Suter, A. et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406, 902–906 (2000). https://doi.org/10.1038/35022595

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35022595

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing