Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes

Abstract

Compact solid-state lamps based on light-emitting diodes (LEDs)1,2 are of current technological interest as an alternative to conventional light bulbs. The brightest LEDs available so far emit red light and exhibit higher luminous efficiency than fluorescent lamps. If this luminous efficiency could be transferred to white LEDs, power consumption would be dramatically reduced, with great economic and ecological consequences. But the luminous efficiency of existing white LEDs is still very low, owing to the presence of electrostatic fields within the active layers3. These fields are generated by the spontaneous and piezoelectric polarization along the [0001] axis of hexagonal group-III nitrides—the commonly used materials for light generation4,5,6. Unfortunately, as this crystallographic orientation corresponds to the natural growth direction of these materials deposited on currently available substrates7. Here we demonstrate that the epitaxial growth of GaN/(Al,Ga)N on tetragonal LiAlO2 in a non-polar direction allows the fabrication of structures free of electrostatic fields, resulting in an improved quantum efficiency. We expect that this approach will pave the way towards highly efficient white LEDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calculated band profiles in (5 nm GaN)/(10 nm Al 0.1Ga0.9N) quantum wells.
Figure 2: Structural characterization of hexagonal GaN.
Figure 3: Symmetric triple-crystal ω–2θ X-ray diffraction scans of a GaN(1&1macr;00) film grown on γ-LiAlO2(100) and a GaN(0001) film grown on 6H-SiC(0001).
Figure 4: The effect of electric polarization on the emission characteristics of GaN/(Al,Ga)N multiple quantum wells (MQWs).

Similar content being viewed by others

References

  1. Ponce, F. A. & Bour, D. P. Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351–359 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Morkoç, H. & Mohammad, S. N. High-luminosity blue and blue-green gallium nitride light-emitting diodes. Science 267, 51–55 ( 1995).

    Article  ADS  Google Scholar 

  3. Deguchi, T. et al. Quantum-confined Stark effect in an AlGaN/GaN/AlGaN single quantum well structure. Jpn J. Appl. Phys. 38, L914–L916 (1999).

    Article  CAS  Google Scholar 

  4. Bernardini, F., Fiorentini, V. & Vanderbilt, D. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56, R10024 –R10027 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Bernardini, F. & Fiorentini, V. Macroscopic polarization and band offsets at nitride heterojunctions. Phys. Rev. B 57, R9427–R9430 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Fiorentini, V., Bernardini, F., Della Sala, F., Di Carlo, A. & Lugli, P. Effects of macroscopic polarization in III-V nitride multiple quantum wells. Phys. Rev. B 60, 8849–8858 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Iwata, K., Asahi, H., Asami, K., Kuroiwa, R. & Gonda, S. Gas source molecular beam epitaxy growth of GaN on C-, A-, R- and M-plane sapphire and silica glass substrates. Jpn J. Appl. Phys. 36, L661–L664 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Bogner, G. et al. White LED production at Osram. Compound Semicond. 5, 28–31 (1999 ).

    Google Scholar 

  9. Mukai, T., Morita, D. & Nakamura, S. High-power UV InGaN/AlGaN double-heterostructure LEDs. J. Cryst. Growth 189/190, 778– 781 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Langer, R. et al. Giant electric fields in unstrained GaN single quantum wells. Appl. Phys. Lett. 74, 3827– 3829 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Nishida, T. & Kobayashi, N. NTT reports 346 nm emission from AlGaN LED. Compound Semicond. 5, 12 (1999).

    Google Scholar 

  12. Thamm, A. et al. Optical properties of heavily doped GaN/(Al,Ga)N multiple quantum wells grown on 6H-SiC(0001) by reactive molecular-beam epitaxy. Phys. Rev. B 61, 16025–16028 (2000).

    Article  ADS  CAS  Google Scholar 

  13. Jiang, H. et al. Photoluminescence and photoluminescence excitation spectra of In0.2Ga0.8N-GaN quantum wells: comparison between experimental and theoretical studies. IEEE J. Quant. Electron. 35 , 1483–1490 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Brandt, O. in Group III Nitride Semiconductor Compounds: Physics and Applications (ed. Gil, B.) 417–459 (Oxford Univ. Press, 1998).

    Google Scholar 

  15. Northrup, J. E. & Neugebauer, J. Theory of GaN(1&1macr;00) and (11&2macr;0) surfaces. Phys. Rev. B 53, R10477–R10480 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Ludwig, W. Festkörperphysik (Akademische Verlagsgesellschaft, Wiesbaden, 1978).

    Google Scholar 

  17. Marezio, M. The crystal structure and anomalous dispersion of γ-LiAlO2. Acta Crystallogr. 19, 396– 400 (1965).

    Article  CAS  Google Scholar 

  18. Hellman, E. S., Lilienthal-Weber, Z. & Buchanan, D. N. F. Epitaxial growth and orientation of GaN on (100)γ-LiAlO 2. MRS Internet J. of Nitride Research 2, 30 〈http://nsr.mij.mrs.org/2/〉 (1997).

    Article  Google Scholar 

  19. Brandt, O. et al. Critical issues for the growth of high quality (Al,Ga)N/GaN and GaN/(In,Ga)N heterostructures on SiC(0001) by molecular beam epitaxy. Appl. Phys. Lett. 75, 4019– 4021 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Waltereit, P. et al. Influence of AlN nucleation layers on growth mode and strain relief of GaN grown on 6H-SiC(0001). Appl. Phys. Lett. 74, 3660–3662 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Della Sala, F. et al. Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures. Appl. Phys. Lett. 74, 2002–2004 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Schnitzer, I., Yablonovitch, E., Caneau, C., Gmitter, T. J. & Scherer, A. 30% external quantum efficiency from surface textured, thin-film light-emitting diodes. Appl. Phys. Lett. 63, 2174–2176 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Fricke, J., Yang, B., Brandt, O. & Ploog, K. Patterning of cubic and hexagonal GaN by Cl2/N2-based reactive ion etching. Appl. Phys. Lett. 74, 3471– 3473 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Mayrock and H.-J. Wünsche for help in the calculation of single-particle wavefunctions and exciton binding energies. This work was supported in part by the Volkswagen-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Waltereit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waltereit, P., Brandt, O., Trampert, A. et al. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865–868 (2000). https://doi.org/10.1038/35022529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35022529

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing