Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenic strategies of enteric bacteria

Abstract

Enteric bacteria use a limited array of macromolecular systems to implement diverse pathogenic strategies. The cellular targets of several enteric virulence factors have recently been identified. The themes that have emerged from these studies include the exploitation of molecules that regulate the actin cytoskeleton and the activation of apoptotic pathways to serve the pathogen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macromolecular systems for type IV pilus, type II secretion and type III secretion.
Figure 2: Acquisition of virulence factors by V. cholerae. Infection with TCPφ (blue) was a critical step in the evolution of virulence by non-pathogenic strains of V. cholerae.
Figure 3: Exploitation of actin polymerization machinery by enteric pathogens.
Figure 4: Enteric pathogens target the cytoskeleton to induce their uptake into epithelial cells.
Figure 5: Strategies used by enteric bacteria to foil macrophages.

Similar content being viewed by others

References

  1. Whittam, T.S. Escherichia coli and Salmonella: Cellular and Molecular Biology (ed. Neidhardt, F. C.) 2708–2720 (ASM Press, Washington, DC, 1996).

    Google Scholar 

  2. Lawrence, J. G. & Ochman, H. Molecular archaeology of the Escherichia coli genome. Proc. Natl Acad. Sci. USA 95, 9413–9417 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Waldor, M. K. & Mekalanos, J. J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Karaolis, D. K., Somara, S., Maneval, D. R. Jr Johnson, J. A. & Kaper, J. B. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature 399, 375–379 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Perna, N. T. et al. Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 66, 3810–3817 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thanassi, D. G., Saulino, E. T. & Hultgren, S.J. The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr. Opin. Microbiol. 1, 223–231 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Yoshida, T., Kim, S. R. & Komano, T. Twelve pil genes are required for biogenesis of the R64 thin pilus. J. Bacteriol. 181, 2038–2043 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anantha, R. P., Stone, K. D. & Donnenberg, M. S. S. Effects of bfp mutations on biogenesis of functional enteropathogenic Escherichia coli type IV pili. J. Bacteriol. 182, 2498–2506 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hamburger, Z. A., Brown, M. S., Isberg, R. R. & Bjorkman, P. J. Crystal structure of invasin: a bacterial integrin-binding protein. Science 286, 291–295 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Luo, Y. et al. Crystal structure of enteropathogenic Escherichia coli intimin–receptor complex. Nature 405, 1073–1077 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Russel, M. Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. J. Mol. Biol. 279, 485–499 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Marciano, D. K., Russel, M. & Simon, S. M. An aqueous channel for filamentous phage export. Science 284, 1516–1519 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Young, G. M., Schmiel, D. H. & Miller, V. L. A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc. Natl Acad. Sci. USA 96, 6456–6461 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Blocker, A. et al. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147, 683–693 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Knutton, S. et al. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17, 2166–2176 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tardy, F. et al. Yersinia enterocolitica type III secretion-translocation system: channel formation by secreted Yops. EMBO J. 18, 6793–6799 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davis, B. M. et al. Convergence of the secretory pathways for cholera toxin and the filamentous phage, CTXφ. Science 288, 333–335 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Donnenberg, M. S., Kaper, J. B. & Finlay, B. B. Interactions between enteropathogenic Escherichia coli and host epithelial cells. Trends Microbiol. 5, 109–114 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Knutton, S., Shaw, R. K., Anantha, R. P., Donnenberg, M. S. & Zorgani, A. A. The type IV bundle-forming pilus of enteropathogenic Escherichia coli undergoes dramatic alterations in structure associated with bacterial adherence, aggregation and dispersal. Mol. Microbiol. 33, 499–509 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Anantha, R. P., Stone, K. D. & Donnenberg, M. S. The role of BfpF, a member of the PilT family of putative nucleotide-binding proteins, in type IV pilus biogenesis and in interactions between enteropathogenic Escherichia coli and host cells. Infect. Immun. 66, 122–131 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bieber, D. et al. Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280, 2114–2118 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Kenny, B. et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Sanger, J. M., Chang, R., Ashton, F., Kaper, J. B. & Sanger, J. W. Novel form of actin-based motility transports bacteria on the surface of infected cells. Cell Motil. Cytoskeleton 34, 279–287 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Sansonetti, P. J., Tran, V. N. & Egile, C. Rupture of the intestinal epithelial barrier and mucosal invasion by Shigella flexneri. Clin. Infect. Dis. 28, 466–475 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Ménard, R., Prévost, M. C., Gounon, P., Sansonetti, P. & Dehio, C. The secreted Ipa complex of Shigella flexneri promotes entry into mammalian cells. Proc. Natl Acad. Sci. USA 93, 1254–1258 (1996).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Cudmore, S., Cossart, P., Griffiths, G. & Way, M. Actin-based motility of vaccinia virus. Nature 378, 636–638 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Jensen, V. B., Harty, J. T. & Jones, B. D. Interactions of the invasive pathogens Salmonella typhimurium, Listeria monocytogenes, and Shigella flexneri with M cells and murine Peyer's patches. Infect. Immun. 66, 3758–3766 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sansonetti, P. J., Arondel, J., Cavaillon, J.-M & Huerre, M. Role of interleukin-1 in the pathogenesis of experimental shigellosis. J. Clin. Invest. 96, 884–892 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Achtman, M. et al. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl Acad. Sci. USA 96, 14043–14048 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cornelis, G. R. & Wolf-Watz, H. The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol. Microbiol. 23, 861–867 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Monack, D. M., Mecsas, J., Bouley, D. & Falkow, S. Yersinia-induced apoptosis in vivo aids in the establishment of a systemic infection of mice. J. Exp. Med. 188, 2127–2137 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mirold, S. et al. Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc. Natl Acad. Sci. USA 96, 9845–9850 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fu, Y. X. & Galán, J. E. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Hersh, D. et al. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl Acad. Sci. USA 96, 2396–2401 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hensel, M. et al. Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Vazquez-Torres, A. et al. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287, 1655–1658 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Uchiya, K. et al. A Salmonella virulence protein that inhibits cellular trafficking. EMBO J. 18, 3924–3933 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kalman, D. et al. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nature Cell Biol. 1, 389–391 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Ben-Ami, G. et al. Agents that inhibit Rho, Rac, and Cdc42 do not block formation of actin pedestals in HeLa cells infected with enteropathogenic Escherichia coli. Infect. Immun. 66, 1755–1758 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Egile, C. et al. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146, 1319–1332 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Van Nhieu, G. T., Caron, E., Hall, A. & Sansonetti, P. J. IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J. 18, 3249–3262 (1999).

    Article  Google Scholar 

  44. Tran Van Nhieu, G., Ben-Ze'ev, A. & Sansonetti, P. J. Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin. EMBO J. 16, 2717–2729 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bourdet-Sicard, R. et al. Binding of the Shigella protein IpaA to vinculin induces F-actin depolymerization. EMBO J. 18, 5853–5862 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou, D. G., Mooseker, M. S. & Galán, J. E. An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc. Natl Acad. Sci. USA 96, 10176–10181 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hayward, R. D. & Koronakis, V. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J. 18, 4926–4934 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. & Galán, J. E. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Palmer, L. E., Hobbie, S., Galán, J. E. & Bliska, J. B. YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNF-α production and downregulation of the MAP kinases p38 and JNK. Mol. Microbiol. 27, 953–965 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Schesser, K. et al. The yopJ locus is required for Yersinia-mediated inhibition of NF-κB activation and cytokine expression: YopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity. Mol. Microbiol. 28, 1067–1079 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Persson, C. et al. Localization of the Yersinia PTPase to focal complexes is an important virulence mechanism. Mol. Microbiol. 33, 828–838 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Black, D. S. & Bliska, J. B. Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J. 16, 2730–2744 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Persson, C., Carballeira, N., Wolf-Watz, H. & Fällman, M. The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J. 16, 2307–2318 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zumbihl, R. et al. The cytotoxin YopT of Yersinia enterocolitica induces modification and cellular redistribution of the small GTP-binding protein RhoA. J. Biol. Chem. 274, 29289–29293 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank J. B. Kaper for critically reviewing the manuscript. The author's work is supported by Public Health Service awards from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donnenberg, M. Pathogenic strategies of enteric bacteria. Nature 406, 768–774 (2000). https://doi.org/10.1038/35021212

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35021212

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing