Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular mechanism of vectorial proton translocation by bacteriorhodopsin

Abstract

Bacteriorhodopsin, a membrane protein with a relative molecular mass of 27,000, is a light driven pump which transports protons across the cell membrane of the halophilic organism Halobacterium salinarum. The chromophore retinal is covalently attached to the protein via a protonated Schiff base. Upon illumination, retinal is isomerized. The Schiff base then releases a proton to the extracellular medium, and is subsequently reprotonated from the cytoplasm. An atomic model for bacteriorhodopsin was first determined by Henderson et al1, and has been confirmed and extended by work in a number of laboratories in the last few years2. Here we present an atomic model for structural changes involved in the vectorial, light-driven transport of protons by bacteriorhodopsin. A ‘switch’ mechanism ensures the vectorial nature of pumping. First, retinal unbends, triggered by loss of the Schiff base proton, and second, a protein conformational change occurs. This conformational change, which we have determined by electron crystallography at atomic (3.2 Å in-plane and 3.6 Å vertical) resolution, is largely localized to helices F and G, and provides an ‘opening’ of the protein to protons on the cytoplasmic side of the membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional difference density map showing structural changes in the D96G, F171C, F219L triple mutant compared with the unilluminated native wild-type bacteriorhodopsin.
Figure 2: Comparison of atomic models for wild-type bacteriorhodopsin and the D96G, F171C, F219L triple mutant.
Figure 3: Representation of van der Waals surfaces at the entrance of the cytoplasmic channel in unilluminated wild-type bacteriorhodopsin and the D96G, F171C, F219L triple mutant.
Figure 4: Analysis of the nature of the protein conformational change using projection Fourier maps.
Figure 5: Observed conformations of retinal derivatives and proposed displacement of Schiff base on deprotonation.

Similar content being viewed by others

References

  1. Henderson, R. et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929 (1990).

    Article  CAS  Google Scholar 

  2. Subramaniam, S. The structure of bacteriorhodopsin: an emerging consensus. Curr. Opin. Struct. Biol. 9, 462–468 (1999).

    Article  CAS  Google Scholar 

  3. Subramaniam, S. et al. Protein conformational changes in the bacteriorhodopsin photocycle. J. Mol. Biol. 287, 145– 161 (1999).

    Article  CAS  Google Scholar 

  4. Vonck, J. Structure of the bacteriorhodopsin mutant F219L N intermediate revealed by electron crystallography. EMBO J. 19, 2152 –2160 (2000).

    Article  CAS  Google Scholar 

  5. Luecke, H., Schobert, B., Richter, H. -T., Cartailler, J. -P., & Lanyi, J. K. Structural changes in bacteriorhodopsin during ion transport at 2 Å resolution. Science 286, 255–260 ( 1999).

    Article  CAS  Google Scholar 

  6. Sass, H.-J. et al. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature 406, 649–653 (2000).

    Article  ADS  CAS  Google Scholar 

  7. Dencher, N. A., Dresselhaus, D., Zaccai, G. & Büldt, G. Structural changes in bacteriorhodopsin during proton translocation revealed by neutron diffraction. Proc. Natl Acad. Sci. USA 86 , 7876–7879 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Koch, M. H. J. et al. Time-resolved X-ray diffraction study of structural changes associated with the photocycle of bacteriorhodopsin. EMBO J. 10, 521–526 (1991).

    Article  CAS  Google Scholar 

  9. Kamikubo, H. et al. The last phase of the reprotonation switch in bacteriorhodopsin: The transition between the M-type and the N-type protein conformation depends on hydration. Biochemistry 36, 12282– 12287 (1996).

    Article  Google Scholar 

  10. Subramaniam, S., Gerstein, M., Oesterhelt, D. & Henderson, R. Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO J. 12, 1–8 (1993).

    Article  CAS  Google Scholar 

  11. Oka, T. et al. Conformational change of helix G in the bacteriorhodopsin photocycle: Investigation with heavy atom labeling and X-ray diffraction. Biophys. J. 76, 1018–1023 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Fodor, S. P. et al. Chromophore structure in bacteriorhodopsin's N intermediate: implications for the proton pumping mechanism. Biochemistry 27, 7097–7101 (1988).

    Article  CAS  Google Scholar 

  13. Elia, G. R., Childs, R. F., Britten, J. F., Yang, D. S. C. & Santarsiero, B. D. Structure and wavelength modification in retinylidene iminium salts. Can. J. Chem. 74, 591–601 (1996).

    Article  CAS  Google Scholar 

  14. Santarsiero, B. D., James, M. N. G., Mahendran, M. & Childs, R. F. The crystal structure of N-methyl-N-phenyl-retinylideneiminium perchlorate: a structural model for the bacteriorhodopsin chromophore. J. Am. Chem. Soc. 112, 9416–9418 (1990).

    Article  CAS  Google Scholar 

  15. Hamanaka, T., Mitsui, T., Ashida, T. & Kakudo, M. The crystal structure of all-trans retinal1. Acta Crystallogr. B 28, 214–222 ( 1972).

    Article  CAS  Google Scholar 

  16. Stam, C. H. The crystal structure of a monoclinic modification and the refinement of a triclinic modification of vitamin A acid (retinoic acid), C20H 28O2. Acta Crystallogr. B 28, 2936–2945 (1972).

    Article  CAS  Google Scholar 

  17. Simmons, C. J., Liu, R. S. H., Denny, M. & Seff, K. The crystal structure of 13-cis-retinal. The molecular structures of its 6-s-cis and 6-s-trans conformers. Acta Crystallogr. B 37 , 2197–2205 (1981).

    Article  Google Scholar 

  18. Simmons, C. J., Asato, A. E. & Liu, R. S. H. Structure of All-trans-3,4-didehydroretinal (retinal2). Acta Crystallogr. C 42, 711–715 (1986).

    Article  Google Scholar 

  19. Moltke, S. et al. The angles between the C-1-, C-5-, and C-9-methyl bonds of the retinylidene chromophore and the membrane normal increase in the M-intermediate of bacteriorhodopsin: Direct determination with solid-state H-2 NMR. Biochemistry 38, 11762–11772 (1999).

    Article  CAS  Google Scholar 

  20. Griffiths, J. M. et al. Structural investigation of the active site in bacteriorhodopsin: Geometric constraints on the roles of Asp-85 and Asp-212 in the proton pumping mechanism from solid-state NMR. Biochemistry 39, 362–371 (2000).

    Article  CAS  Google Scholar 

  21. Brown, L. S. et al. A local electrostatic change is the cause of the large scale protein conformation shift in bacteriorhodopsin. Proc. Natl Acad. Sci. USA 94, 5040–5044 ( 1997).

    Article  ADS  CAS  Google Scholar 

  22. Schobert, B. & Lanyi, J. K. Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257, 306– 313 (1982).

    Google Scholar 

  23. Hoff, W. D., Jung, K. H. and Spudich, J. L. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Ann. Rev. Biophys. Biomol. Struct. 26, 223–258 (1997).

    Article  CAS  Google Scholar 

  24. Altenbach, C. et al. Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. Biochemistry 35, 12470– 12478 (1996).

    Article  CAS  Google Scholar 

  25. Faruqi, A. R., Henderson, R. & Subramaniam, S. Cooled CCD detector with tapered fibre optics for recording electron diffraction patterns. Ultramicroscopy 75, 235–250 (1999).

    Article  CAS  Google Scholar 

  26. Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. & Henderson, R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421 (1996).

    Article  CAS  Google Scholar 

  27. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  28. Essen, L. O., Siegert, R., Lehmannn, W. D. & Oesterhelt, D. Lipid patches in membrane protein oligomers: Crystal structure of the bacteriorhodopsin-lipid complex. Proc. Natl Acad. Sci. USA 95, 11673 –1167 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Subramaniam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramaniam, S., Henderson, R. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin . Nature 406, 653–657 (2000). https://doi.org/10.1038/35020614

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35020614

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing