
spheres whose geometry is fixed, the optimal
shape of the centre line of a deformable tube
must be found. Consequently it is not a 
simple matter to find the optimal packing 
of even a single tube.

This modelling problem makes sense
only if the tube, like any real rope or molec-
ule, has a definite non-zero thickness. Figure
1a shows a way of packing (presumably opti-
mally) a tube of length 4p and uniform
thickness r (or radius r, but be aware that
sometimes thickness means diameter) into a
cubic box of side length 4r. The centre line of
the tube is a saddle-like trajectory that is built
from four semi-circles. The point of this
example is that, whenever the parameters of
the tube and the box are less simply related, 
it is hard to even guess the optimal packing.
This is the general topic addressed by Mari-
tan et al.1 in their numerical simulations.

The basic issue to be overcome in numeri-
cal simulations is that the idea of thickness is
not quite as simple as it might first seem4,5. In
the tube model a non-zero thickness has two
possible effects: first, the centre line cannot
be bent too sharply; and second, any two
points that are far apart along the curve can-
not be too close to each other in space. So, for
a given centre line, the maximum possible
thickness is governed by either local bending
or by non-local points of closest approach,
or, apparently exceptionally, by both con-
ditions simultaneously. For the centre line 
of the tube shown in Fig. 1a, both of these 
conditions are simultaneously realized at
every point along the red centre line.

Maritan et al. characterize the thickness
of strings or tubes in terms of a quantity
called global radius of curvature6. For any
curve made up of discrete straight lines join-
ing node points, the thickness is taken to be
the minimal radius of all possible circles
passing through any three nodes of the curve.
If the smallest radius is achieved by three
adjacent nodes, the thickness is controlled 
by local bending, whereas if the nodes on 
the minimal circle are not all adjacent, the
thickness is governed by the non-local 
condition of closest approach.

Armed with this tool, Maritan et al. use a

Monte Carlo algorithm to move the nodes of
a centre line with a given length into an opti-
mal shape, which maximizes thickness when
subject to one of several compactness con-
straints. Perhaps the simplest compactness
condition is that the centre line is completely
contained in a given box. In spirit, their pro-
cedure is similar to that of earlier studies (see
examples in ref. 7) but, with the exception 
of ref. 8, all previous work has looked at the
optimal shapes of closed, knotted curves,
much beloved of mathematicians. (A curve
is closed if its two ends are joined or glued
together to form a loop. A loop is knotted if it
cannot be smoothly deformed to a simple
circle without cutting.) Indeed, from a solely
mathematical point of view, Maritan et al.’s
contribution is the elegant, and in retrospect
delightfully obvious, idea that the con-
straints of closure and knotting can usefully
be replaced by one of several compactness
conditions on the centre line. (In the absence
of any compactness constraint at all, the
optimal centre line is merely a straight line 
of infinite thickness.)

What about the physical implications of
the simulations presented by Maritan et al.?
Perhaps their most intriguing results arise
when they impose local compactness condi-
tions that are independent of external con-
straints such as a box. They state that, for “a
broad class of local constraints”, the optimal
centre line is a particular helix in which the
ratio of the pitch (or period) p to radius r is
such that the bending and closest-approach
constraints are realized everywhere simul-
taneously (p/r42.512). Maritan et al. then
consider crystal structures of various a-
helical polypeptides (one of the basic struc-
tural motifs of proteins), and show that the
helices formed by the a-carbons in the
polypeptide backbone have almost the same
optimal shape as found in their simulations
(Fig. 1b).

Are optimal packings of tubes related to
other basic structural motifs in biology? For
example, does the DNA double helix also
involve optimally packed tubes? A related
problem studied by Pieranski8 involves 
finding the densest coiling of two identical
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Figure 1 Tightly packed tubes. a, Packing of a tube into a box whose sides are four times the radius 
of the tube. b, A single helical tube whose centre line has the critical pitch/radius ratio of 2.512. 
c, Double-helical tubes in which the ratio between pitch and tube radius has the critical value 2p.
Helices with parameters as in b closely resemble those observed in a-helical segments of proteins and
are also obtained in numerical simulations of optimal packing of individual tubes by Maritan et al.1,
whereas the parameters of the double-helical tubes in c closely match those for DNA.
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100 YEARS AGO
It is a remarkable sign of the times when the
head of a firm principally distinguished for
the introduction into this country of American
methods of dealing with drugs, i.e. by putting
them up in new and convenient shapes and
doses, goes out of his way to fit up extensive
research laboratories. This is what Mr.
Wellcome has done... A well-built modern
house has been secured at No. 6 King Street,
Snow Hill, and has been converted into a
series of three commodious and well-fitted
laboratories, a library and office, and a 
store-room and workshop. Each laboratory 
is self-contained and each is connected with
the other and with the directors’ office by
means of telephones… Mr. Wellcome intends
to carry on his laboratories in no narrow
spirit; this means, I presume, that he has
other views then the conversion of his
business into a chemical manufacturing
concern. Though much work is done towards
the perfection of the firm’s preparations, time
has been found for several researches which
have been published, and other work of this
kind is in hand… All interested in the
advance of chemistry, whether pure or
applied, will wish Mr. Wellcome success, 
and also that he may find imitators among
the numbers of firms who are meditating an
advance in the direction of a more scientific
method of conducting their manufactures.
From Nature 19 July 1900.

50 YEARS AGO
Crystalline inclusion bodies in tobacco plants
infected by tobacco mosaic virus have been
known since 1903, and circumstantial
evidence has made it appear likely that these
crystals are composed largely of the virus
protein. The present work makes it appear
even more likely than before that the crystals
are pure virus protein, and shows the crystals
to be of considerable interest from several
quite different but related points of view. On
account of the exceptionally large dimension
of the protein particle, it has been possible
for the first time to make, in part at least, a
structure analysis of the crystal using visible
light in a manner analogous to that of X-ray
diffraction. As a result, it has been possible
to settle the controversial question of the
length of the rod-shaped virus particle in the
living plant. Also, the interpretation of the
appearance of the crystals, as seen with 
the microscope, leads to a theory of the
formation of images of three-dimensional
objects. M. H. F. Wilkins et al.
From Nature 22 July 1950.
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