Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Melting of the Earth's lithospheric mantle inferred from protactinium– thorium–uranium isotopic data

Abstract

The processes responsible for the generation of partial melt in the Earth's lithospheric mantle and the movement of this melt to the Earth's surface remain enigmatic, owing to the perceived difficulties in generating large-degree partial melts at depth and in transporting small-degree melts through a static lithosphere1. Here we present a method of placing constraints on melting in the lithospheric mantle using 231Pa–235U data obtained from continental basalts in the southwestern United States and Mexico. Combined with 230Th–238U data2,3, the 231Pa–235U data allow us to constrain the source mineralogy and thus the depth of melting of these basalts. Our analysis indicates that it is possible to transport small melt fractions—of the order of 0.1%—through the lithosphere, as might result from the coalescence of melt by compaction4 owing to melting-induced deformation5. The large observed 231Pa excesses require that the timescale of melt generation and transport within the lithosphere is small compared to the half-life of 231Pa (32.7 kyr). The 231Pa–230Th data also constrain the thorium and uranium distribution coefficients for clinopyroxene in the source regions of these basalts to be within 2% of one another, indicating that in this setting 230Th excesses are not expected during melting at depths shallower than 85 km.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A general tectonic map of the study region.
Figure 2: (231Pa/235U) versus (230Th/238U) diagram, showing our age-corrected values.
Figure 3: Results from dynamic melting calculations using an equilibrium porous flow model24 and D values from ref.

Similar content being viewed by others

References

  1. Leeman, W. P. & Harry, D. L. A binary source model for extension-related magmatism in the Great Basin, western North America. Science 262, 1550–1554 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Asmerom, Y. The Th-U fractionation and mantle structure. Earth Planet. Sci. Lett. 166, 163–175 ( 1999).

    Article  ADS  CAS  Google Scholar 

  3. Asmerom, Y. & Edwards, R. L. U-series isotope evidence for the origin of continental basalts. Earth Planet. Sci. Lett. 134, 1–7 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Kohlstedt, D. L. & Zimmerman, M. E. Rheology of partially molten mantle rocks. Annu. Rev. Earth Planet. Sci. 24, 41–62 ( 1996).

    Article  ADS  CAS  Google Scholar 

  5. McKenzie, D. The generation and compaction of partially molten rock. J. Petrol. 25, 713–765 ( 1984).

    Article  ADS  CAS  Google Scholar 

  6. Pickett, D. A. & Murrell, M. T. Observations of 231Pa/235U disequilibrium in volcanic rocks. Earth Planet. Sci. Lett. 148, 259–271 ( 1997).

    Article  ADS  CAS  Google Scholar 

  7. Perry, F., Baldridge, W. & DePaolo, D. Role of asthenosphere and lithosphere in the genesis of Late Cenozoic basaltic rocks from the Rio Grande rift and adjacent regions of the southwestern United States. J. Geophys. Res. 92, 9193–9213 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Menzies, M., Kyle, P., Jones, M. & Ingram, G. Enriched and depleted source components for tholeiitic and alkaline lavas from Zuni-Bandera, New Mexico: inferences about intraplate processes and stratified lithosphere. J. Geophys. Res. 96, 13645– 13671 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Lynch, D. J., Musselman, T. E., Gutmann, J. T. & Patchett, P. J. Isotopic evidence for the origin of Cenozoic volcanic rocks in the Pinacate volcanic field, northwestern Mexico. Lithos 29, 295–302 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Goldstein, S. J., Murrell, M. T. & Williams, R. W. 231Pa and 230Th chronology of mid-ocean ridge basalts. Earth Planet. Sci. Lett. 115, 151–159 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Lundstrom, C. C., Gill, J., Williams, Q. & Hanan, B. B. Investigating solid mantle upwelling beneath mid-ocean ridges using U-series disequilibria. II. A local study at 33 oS Mid-Atlantic Ridge. Earth Planet Sci. Lett. 157, 167–181 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Bourdon, B., Joron, J.-L., Christelle, C.-I. & Allegre, C. J. U-Th-Pa-Ra systematics for the Grande Comore volcanics; melting processes in an upwelling plume. Earth Planet Sci. Lett. 164, 119–133 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Thompson, G. A. & Zoback, M. L. Regional geophysics of the Colorado Plateau. Tectonophysics 61, 149–181 (1979).

    Article  ADS  Google Scholar 

  14. Alibert, C. Peridotite xenoliths from western Grand Canyon and the Thumb; a probe into the subcontinental mantle of the Colorado Plateau. J. Geophys. Res. 99, 21605–21620 ( 1994).

    Article  ADS  Google Scholar 

  15. Robinson, J. A. & Wood, B. J. The depth of the spinel to garnet transition at the peridotite solidus. Earth Planet Sci. Lett. 164, 277–284 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Beattie, P. Uranium–thorium disequilibria and partitioning on melting of garnet peridotite. Nature 363, 63– 65 (1993).

    Article  ADS  CAS  Google Scholar 

  17. LaTourrette, T. Z., Kennedy, A. K. & Wasserburg, G. J. Thorium-uranium fractionation by garnet: Evidence for a deep source and rapid rise of oceanic basalts. Science 261, 739–742 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Lundstrom, C. et al. Compositional controls on the partitioning of U, Th, Ba, Pb, Sr and Zr between clinopyroxene and haplobasaltic melts: implications for uranium series disequilibria in basalts. Earth Planet. Sci. Lett. 128, 407–423 ( 1994).

    Article  ADS  CAS  Google Scholar 

  19. Salters, V. J. M. & Longhi, J. Trace element partitioning during the initial stages of melting beneath mid-ocean ridges: Earth Planet . Sci. Lett. 166, 15– 30 (1999).

    CAS  Google Scholar 

  20. Wood, B. J., Blundy, J. D. & Robinson, J. A. The role of clinopyroxene in generating U-series disequilibrium during mantle melting. Geochim. Cosmochim. Acta 63, 1613–1620 ( 1999).

    Article  ADS  CAS  Google Scholar 

  21. LaTourrette, T. Z. & Burnett, D. S. Experimental determination of U and Th partitioning between clinopyroxene and natural and synthetic basaltic liquid. Earth Planet. Sci. Lett. 110, 227–244 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Hirschmann, M. M. & Stolper, E. M. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib. Mineral. Petrol. 124, 185–208 (1986).

    Article  ADS  Google Scholar 

  23. Williams, R. W. & Gill, J. B. Effect of partial melting on uranium decay series. Geochim. Cosmochim. Acta 53, 1607–1619 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Spiegelman, M. & Elliott, T. Consequences of melt transport for uranium series disequilibrium in young lavas. Earth Planet. Sci. Lett. 118, 1–20 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Navon, O. & Stolper, E. Geochemical consequences of melt percolation: the upper mantle as a chromatographic column. J. Geol. 95, 285–307 ( 1987).

    Article  ADS  CAS  Google Scholar 

  26. McKenzie, D. (230Th/ 238U) disequilibrium and the melting process beneath ridge axes. Earth Planet. Sci. Lett. 72, 81–91 (1985).

    Article  ADS  Google Scholar 

  27. Riter, J. C. A. & Smith, D. Xenolith constraints on the thermal history of the mantle below the Colorado Plateau. Geology 24, 267–270 ( 1996).

    Article  ADS  CAS  Google Scholar 

  28. Pickett, D. A., Murrell, M. T. & Williams, R. W. Determination of femtogram quantities of protactinium in geologic samples by thermal ionization mass spectrometry. Anal. Chem. 66, 1044–1049 ( 1994).

    Article  CAS  Google Scholar 

  29. Edwards, R. L., Cheng, H., Murrell, M. T. & Goldstein, S. J. Protactinium-231 dating of carbonates by thermal ionization mass spectroscopy: implications for the causes of Quaternary climate change. Science 276, 782–786 ( 1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Salters, C. Lundstrom and D. Pickett for comments on the manuscript and M. Spiegelman, M. Reagan and D.L. Kohlstedt for discussions. We also thank the US Park Service for access. This work was and is being supported by the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yemane Asmerom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asmerom, Y., Cheng, H., Thomas, R. et al. Melting of the Earth's lithospheric mantle inferred from protactinium– thorium–uranium isotopic data. Nature 406, 293–296 (2000). https://doi.org/10.1038/35018550

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018550

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing