Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A large age for the pulsar B1757-24 from an upper limit on its proper motion

Abstract

The ‘characteristic age’1 of a pulsar is usually considered to approximate its true age, but this assumption has led to some puzzling results, including the fact that many pulsars with small characteristic ages have no associated supernova remnants2,3. The pulsar B1757-24 is located just outside the edge of a supernova remnant4,5,6; the properties of the system indicate that the pulsar was born at the centre of the remnant with a substantial velocity, and that it has subsequently overtaken the expanding blast wave5,6,7,8. With a characteristic age of 16,000 yr, the pulsar is expected8 to have a proper motion of 63–80 milliarcseconds (mas) per year. Here we report observations of the nebula surrounding the pulsar, which limit its proper motion to less than 25 mas yr-1, implying a minimum age of 39,000 yr. A more detailed analysis argues that the true age may be as great as 170,000 yr, which is significantly larger than the characteristic age. We conclude from this result and other discrepancies associated with pulsars that characteristic ages greatly underestimate the true ages of pulsars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radio emission from the supernova remnant G5.4-1.2.
Figure 2: Radio emission from the western tip of the pulsar-powered nebula G5.27-0.90.

Similar content being viewed by others

References

  1. Manchester, R. N. & Taylor, J. H. Pulsars (Freeman, San Francisco, 1977).

  2. Braun, R., Goss, W. M. & Lyne, A. G. Three fields containing young pulsars: The observable lifetime of supernova remnants. Astrophys. J. 340, 355–361 (1989).

    Article  ADS  Google Scholar 

  3. Stappers, B. W., Gaensler, B. M. & Johnston, S. A deep search for pulsar wind nebulae using pulsar grating. Mon. Not. R. Astron. Soc. 308, 609– 617 (1999).

    Article  ADS  Google Scholar 

  4. Manchester, R. N., D'Amico, N. & Tuohy, I. R. A search for short period pulsars. Mon. Not. R. Astron. Soc. 212, 975–986 (1985).

    Article  ADS  Google Scholar 

  5. Manchester, R. N., Kaspi, V. M., Johnston, S., Lyne, A. G. & D'Amico, N. A remarkable pulsar-supernova remnant association. Mon. Not. R. Astron. Soc. 253, 7P–10P (1991).

    Article  ADS  Google Scholar 

  6. Frail, D. A. & Kulkarni, S. R. Unusual interaction of the high-velocity pulsar PSR 1757-24 with the supernova remnant G5.4-1.2. Nature 352, 785–787 ( 1991).

    Article  ADS  Google Scholar 

  7. Shull, J. M., Fesen, R. A. & Saken, J. M. Pulsar reenergization of old supernova remnant shells. Astrophys. J. 346, 860– 868 (1989).

    Article  ADS  Google Scholar 

  8. Frail, D. A., Kassim, N. E. & Weiler, K. W. Radio imaging of two supernova remnants containing pulsars. Astron. J. 107, 1120– 1127 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Becker, R. H. & Helfand, D. J. A new class of nonthermal radio sources. Nature 313, 115– 118 (1985).

    Article  ADS  Google Scholar 

  10. Caswell, J. L. et al. The Galactic radio sources G5.4-1.2 and G5.27-0.90. Mon. Not. R. Astron. Soc. 225, 329– 334 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Lyne, A. G. & Lorimer, D. R. High birth velocities of radio pulsars. Nature 369, 127– 129 (1994).

    Article  ADS  Google Scholar 

  12. Cordes, J. M. & Chernoff, D. F. Neutron star population dynamics. II. Three-dimensional space velocities of young pulsars. Astrophys. J. 505, 315–338 ( 1998).

    Article  ADS  Google Scholar 

  13. van Buren, D. & McCray, R. Bow shocks and bubbles are seen around hot stars by IRAS. Astrophys. J. 329, L93 –L96 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Frail, D. A. & Scharringhausen, B. R. A radio survey for pulsar wind nebulae. Astrophys. J. 480, 364– 370 (1997).

    Article  ADS  Google Scholar 

  15. Thompson, D. J. et al. EGRET high-energy gamma-ray pulsar studies. I. Young spin-powered pulsars. Astrophys. J. 436, 229– 238 (1994).

    Article  ADS  Google Scholar 

  16. Gaensler, B. M. & Johnston, S. The pulsar/supernova remnant connection. Mon. Not. R. Astron. Soc. 277, 1243–1253 (1995).

    Article  ADS  Google Scholar 

  17. Cioffi, D. F., McKee, C. F. & Bertschinger, E. Dynamics of radiative supernova remnants. Astrophys. J. 334, 252–265 (1988).

    Article  ADS  Google Scholar 

  18. Lyne, A. G., Pritchard, R. S. & Smith, F. G. Crab pulsar timing 1982–1987. Mon. Not. R. Astron. Soc. 233, 667–676 (1988).

    Article  ADS  Google Scholar 

  19. Kaspi, V. M., Manchester, R. N., Siegman, B., Johnson, S. & Lyne, A. G. On the spin-down of PSR B1509-58. Astrophys. J. 422, L83– L86 (1994).

    Article  ADS  Google Scholar 

  20. Lyne, A. G., Pritchard, R. S., Graham-Smith, F. & Camilo, F. Very low braking index for the Vela pulsar. Nature 381, 497–498 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Lyne, A. G. et al. A giant glitch in PSR B1757-24. Mon. Not. R. Astron. Soc. 281, L14–L16 ( 1996).

    Article  ADS  Google Scholar 

  22. Blandford, R. D., Applegate, J. H. & Hernquist, L. Thermal origin of neutron star magnetic fields. Mon. Not. R. Astron. Soc. 204, 1025– 1048 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Blandford, R. D. & Romani, R. W. On the interpretation of pulsar braking indices. Mon. Not. R. Astron. Soc. 234, 57P–60P (1988).

    Article  ADS  Google Scholar 

  24. Seward, F. D., Harnden, F. R. Jr, Murdin, P. & Clark, D. H. MSH 15-52: A supernova remnant containing two compact X-ray sources. Astrophys. J. 267, 698–710 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Frail, D. A., Goss, W. M. & Whiteoak, J. B. Z. The radio lifetime of supernova remnants and the distribution of pulsar velocities at birth. Astrophys. J. 437, 781–793 (1994).

    Article  ADS  Google Scholar 

  26. Brazier, K. T. S. & Johnston, S. The implications of radio-quiet neutron stars. Mon. Not. R. Astron. Soc. 305, 671–679 (1999).

    Article  ADS  Google Scholar 

  27. Umeda, H., Shibazaki, N., Nomoto, K. & Tsuruta, S. Thermal evolution of neutron stars with internal frictional heating. Astrophys. J. 408, 186–193 (1993).

    Article  ADS  Google Scholar 

  28. Sault, R. J. & Killeen, N. E. B. The Miriad User's Guide (Australia Telescope National Facility, Sydney, 1998); also at 〈http://www.atnf.csiro.au/computing/software/miriad〉.

    Google Scholar 

  29. Keys, R. G. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoustic Speech Signal Process 29, 1151 –1160 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  30. Powell, M. J. D. A method for minimizing a sum of squares of non-linear functions without calculating derivatives. Comput. J. 7, 303– 307 (1964).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank V. Kaspi and D. Chakrabarty for useful discussions, N. Kassim for supplying 90-cm data on G5.4-1.2 and A. Lyne for providing timing data on PSR B1757-24. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. B.M.G. acknowledges the support of NASA through a Hubble Fellowship awarded by the Space Telescope Science Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Gaensler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaensler, B., Frail, D. A large age for the pulsar B1757-24 from an upper limit on its proper motion. Nature 406, 158–160 (2000). https://doi.org/10.1038/35018010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018010

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing