Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Collapse of stiff conjugated polymers with chemical defects into ordered, cylindrical conformations

Abstract

The optical, electronic and mechanical properties of synthetic and biological materials consisting of polymer chains depend sensitively on the conformation adopted by these chains. The range of conformations available to such systems has accordingly been of intense fundamental1,2 as well as practical3,4,5,6 interest, and distinct conformational classes have been predicted, depending on the stiffness of the polymer chains and the strength of attractive interactions between segments within a chain7,8,9,10. For example, flexible polymers should adopt highly disordered conformations resembling either a random coil or, in the presence of strong intrachain attractions, a so-called ‘molten globule’2,10. Stiff polymers with strong intrachain interactions, in contrast, are expected to collapse into conformations with long-range order, in the shape of toroids or rod-like structures8,9,11. Here we use computer simulations to show that the anisotropy distribution obtained from polarization spectroscopy measurements on individual poly[2-methoxy-5-(2′-ethylhexyl)oxy-1,4-phenylenevinylene] polymer molecules is consistent with this prototypical stiff conjugated polymer adopting a highly ordered, collapsed conformation that cannot be correlated with ideal toroid or rod structures. We find that the presence of so-called ‘tetrahedral chemical defects’, where conjugated carbon–carbon links are replaced by tetrahedral links, divides the polymer chain into structurally identifiable quasi-straight segments that allow the molecule to adopt cylindrical conformations. Indeed, highly ordered, cylindrical conformations may be a critical factor in dictating the extraordinary photophysical properties of conjugated polymers, including highly efficient intramolecular energy transfer and significant local optical anisotropy in thin films.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical conformations of a 100-segment homopolymer generated by Monte Carlo simulations.
Figure 2: The distribution HM of modulation depths M from single-molecule polarization spectroscopy and from Monte Carlo simulations.
Figure 3: The structural collapse trajectory of a random coil to a toroid.

Similar content being viewed by others

References

  1. de Gennes, P. -G. Scaling Concepts In Polymer Physics (Cornell Univ. Press, Ithaca, New York, 1979).

    Google Scholar 

  2. Grosberg, A. Y. & Kuznetsov, D. V. Quantitative theory of the globule-to-coil transition. Macromolecules 25, 1970–2003 (1992).

    Article  CAS  ADS  Google Scholar 

  3. Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 ( 1999).

    Article  CAS  ADS  Google Scholar 

  4. Hide, F., Diazgarcia, M. A., Schwartz, B. J. & Heeger, A. J. New developments in the photonic applications of conjugated polymers. Acc. Chem. Res. 30, 430–436 (1997).

    Article  CAS  Google Scholar 

  5. Yang, C. Y., Hide, F., Diazgarcia, M. A., Heeger, A. J. & Cao, Y. Microstructure of thin films of photoluminescent semiconducting polymers. Polymer 39, 2299 –2304 (1998).

    Article  CAS  Google Scholar 

  6. Bloomfield, V. A. Condensation of DNA by multivalent cations: Consideration on mechanism. Biopolymers 31, 1471–1481 (1991).

    Article  CAS  Google Scholar 

  7. Grosberg, A. Y. Certain possible conformational states of a uniform elastic polymer chain. Biophysics 24, 30–36 (1979).

    Google Scholar 

  8. Ivanov, V. A., Paul, W. & Binder, K. Finite chain length effects on the coil-globule transition of stiff-chain macromolecules—a Monte Carlo simulation. J. Chem. Phys. 109, 5659–5669 (1998).

    Article  CAS  ADS  Google Scholar 

  9. Noguchi, H. & Yoshikawa, K. Morphological variation in a collapsed single homopolymer chain. J. Chem. Phys. 109, 5070–5077 (1998).

    Article  CAS  ADS  Google Scholar 

  10. Zhou, Y. Q., Karplus, M., Wichert, J. M. & Hall, C. K. Equilibrium thermodynamics of homopolymers and clusters - molecular dynamics and Monte Carlo simulations of systems with square-well interactions. J. Chem. Phys. 107, 10691–10708 (1997).

    Article  CAS  ADS  Google Scholar 

  11. Kuznetsov, Y. A. & Timoshenko, E. G. On the conformational structure of a stiff homopolymer. J. Chem. Phys. 111, 3744–3752 (1999).

    Article  CAS  ADS  Google Scholar 

  12. Xie, X. S. & Trautman, J. K. Optical studies of single molecules at room temperature. Annu. Rev. Phys. Chem. 49, 441–480 (1998).

    Article  CAS  ADS  Google Scholar 

  13. Basche, T., Moerner, W. E., Orrit, M. & Wild, U. P. (eds) Single Molecule Optical Detection, Imaging, and Spectroscopy (Verlag Chemie, Munich, 1996).

    Book  Google Scholar 

  14. Ha, T., Laurence, T. A., Chemla, D. S. & Weiss, S. Polarization spectroscopy of single fluorescent molecules. J. Phys. Chem. B 103, 6839–6850 ( 1999).

    Article  CAS  Google Scholar 

  15. Vandenbout, D. A. et al. Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules. Science 277, 1074–1077 ( 1997).

    Article  CAS  Google Scholar 

  16. Hu, D., Yu, J. & Barbara, P. F. Single-molecule spectroscopy of the conjugated polymer MEH-PPV. J. Am. Chem. Soc. 121, 6936 –6937 (1999).

    Article  CAS  Google Scholar 

  17. Yaliraki, S. N. & Silbey, R. J. Conformational disorder of conjugated polymers—implications for optical properties. J. Chem. Phys. 104, 1245– 1253 (1996).

    Article  CAS  ADS  Google Scholar 

  18. Gettinger, C. L., Heeger, A. J., Drake, J. M. & Pine, D. J. A photoluminescence study of poly(phenylene vinylene) derivatives—the effect of intrinsic persistence length. J. Chem. Phys. 101, 1673–1678 (1994).

    Article  CAS  ADS  Google Scholar 

  19. Padmanaban, G. & Ramakrishnan, S. Conjugation length control in soluble poly[2-methoxy-5-((2′-ethylhexyl)oxy-1,4-phenylenevinylene] (MEHPPV): synthesis, optical properties, and energy migration. J. Am. Chem. Soc. 122, 2244–2251 (2000).

    Article  CAS  Google Scholar 

  20. Mukamel, S., Tretiak, S., Wagersreiter, T. & Chernyak, V. Electronic coherence and collective optical excitations of conjugated molecules. Science 277, 781–787 (1997).

    Article  CAS  Google Scholar 

  21. Woo, H. S. et al. Optical spectra and excitations in phenylene vinylene oligmers. Synth. Met. 59, 13–28 (1993).

    Article  CAS  Google Scholar 

  22. Hagler, T. W., Pakbaz, K. & Heeger, A. J. Polarized-electroabsorption spectroscopy of a soluble derivative of poly(p-phenylenevinylene) oriented by gel processing in polyethylene—polarization anisotropy, the off-axis dipole moment, and excited-state delocalization. Phys. Rev. B 49, 10968– 10975 (1994).

    Article  CAS  ADS  Google Scholar 

  23. Bassler, H. & Schweitzer, B. Site-selective fluorescence spectroscopy of conjugated polymer and oligomers. Acc. Chem. Res. 32, 173–182 (1999).

    Article  Google Scholar 

  24. Blatchford, J. W. et al. Spatially and temporally resolved emission from aggregates in conjugated polymers. Phys. Rev. B 54, R3683–R3686 (1996).

    Article  CAS  ADS  Google Scholar 

  25. Thulstrup, E. W. & Michl, J. Elementary Polarization Spectroscopy (VCH, New York, 1989).

    Google Scholar 

  26. Carmesin, I. & Kremer, K. The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions. Macromolecules 21, 2819– 2823 (1988).

    Article  CAS  ADS  Google Scholar 

  27. Helfand, E. Theory of the kinetics of conformational transitions in polymer. J. Chem. Phys. 54, 4651–4661 (1971).

    Article  ADS  Google Scholar 

  28. Orion, I., Buisson, J. P. & Lefrant, S. Spectroscopic studies of polaronic and bipolaronic species in n-doped poly(paraphenylenevinylene). Phys. Rev. B 57, 7050–7065 (1998).

    Article  CAS  ADS  Google Scholar 

  29. Lodge, T. P. & Fredrickson, G. H. Optical anisotropy of tethered chains. Macromolecules 25, 5643– 5650 (1992).

    Article  CAS  ADS  Google Scholar 

  30. Nguyen, T. Q., Doan, V. & Schwartz, B. J. Conjugated polymer aggregates in solution: Control of interchain interactions. J. Chem. Phys. 110, 4068–4078 (1999).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Foundation (P.F.B.), the Robert A. Welch Foundation (P.J.R. & P.F.B.), and the Texas Advanced Research Program (P.J.R.). Further support was provided by the Institute for Theoretical Chemistry and by the Laboratory for Spectroscopic Imaging, University of Texas. We also thank A. Yethiraj for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul F. Barbara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, D., Yu, J., Wong, K. et al. Collapse of stiff conjugated polymers with chemical defects into ordered, cylindrical conformations. Nature 405, 1030–1033 (2000). https://doi.org/10.1038/35016520

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016520

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing