Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Proteomics to study genes and genomes

Abstract

Proteomics, the large-scale analysis of proteins, will contribute greatly to our understanding of gene function in the post-genomic era. Proteomics can be divided into three main areas: (1) protein micro-characterization for large-scale identification of proteins and their post-translational modifications; (2) ‘differential display’ proteomics for comparison of protein levels with potential application in a wide range of diseases; and (3) studies of protein–protein interactions using techniques such as mass spectrometry or the yeast two-hybrid system. Because it is often difficult to predict the function of a protein based on homology to other proteins or even their three-dimensional structure, determination of components of a protein complex or of a cellular structure is central in functional analysis. This aspect of proteomic studies is perhaps the area of greatest promise. After the revolution in molecular biology exemplified by the ease of cloning by DNA methods, proteomics will add to our understanding of the biochemistry of proteins, processes and pathways for years to come.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A strategy for mass spectrometric identification of proteins and post-translational modifications.
Figure 2: Cell lysate from Escherichia coli analysed by FTICR.
Figure 3: A schematic showing the two-dimensional gel approach.
Figure 4: A schematic showing use of arrays for proteomic analysis.
Figure 5: A generic strategy to isolate interacting proteins.
Figure 6: Characterization of the multi-protein spliceosome complex.
Figure 7: The yeast two-hybrid system.

Similar content being viewed by others

References

  1. Wilkins, M. R., Williams, K. L., Apple, R. D. & Hochstrasser, D. F. Proteome Research: New Frontiers in Functional Genomics 1– 243 (Springer, Berlin, 1997).

    Book  Google Scholar 

  2. Wilkins, M. R. et al. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. BioTechnology 14, 61–65 ( 1996).

    ADS  CAS  PubMed  Google Scholar 

  3. Celis, J. et al. Human 2-D PAGE databases for proteome analysis in health and disease: http://biobase.dk/cgi-bin/celis. FEBS Lett. 398, 129–134 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  4. Anderson, N. G. & Anderson, N. L. Twenty years of two-dimensional electrophoresis: past, present and future. Electrophoresis 17, 443–453 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. O'Farrell, P. H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021 (1975).

    CAS  PubMed  Google Scholar 

  6. Burley, S. K. et al. Structural genomics: beyond the human genome project. Nature Genet. 23, 151–157 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Krogh, A. in Guide to Human Genome Computing (ed. Bishop, M. J.) 261– 274 (Academic, San Diego, 1998).

    Book  Google Scholar 

  8. Dunham, I. et al. The DNA sequence of human chromosome 22. Nature 402, 489–495 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Claverie, J. M. Computational methods for the identification of genes in vertebrate genomic sequences. Hum. Mol. Genet. 6, 1735– 1744 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Pandey, A. & Lewitter, F. Nucleotide sequence databases: a gold mine for biologists. Trends Biochem. Sci. 24 , 276–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Brenner, S. E. Errors in genome annotation. Trends Genet. 15, 132–133 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Gygi, S., Rochon, Y., Franza, B. R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Futcher, B. et al. A sampling of the yeast proteome. Mol. Cell. Biol. 19, 7357–7368 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pandey, A., Andersen, J. S., & Mann, M. Use of mass spectrometry to study signaling pathways . Science's STKE (in the press).

  15. Henzel, W. J., Billeci, T. M., Stults, J. T. & Wong, S. C. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl Acad. Sci. USA 90, 5011–5015 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jensen, O. N., Mortensen, P., Vorm, O. & Mann, M. Automation of matrix assisted laser desorption/ionization mass spectrometry using fuzzy logic feedback control. Anal. Chem. 69, 1706– 1714 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Berndt, P., Hobohm, U. & Langen, H. Reliable automatic protein identification from matrix-assisted laser desorption/ionization mass spectrometric peptide fingerprints. Electrophoresis 20, 3521–3526 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Shevchenko, A. et al. Linking genome and proteome by mass spectrometry: large scale identification of yeast proteins from two dimensional gels. Proc. Natl Acad. Sci. USA 93, 14440–14445 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shevchenko, A. et al. MALDI quadruple time-of-flight mass spectrometry: powerful tool for proteomic research. Anal. Chem. 72, 2132–2141 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, B., Liu, H., Karger, B. L. & Foret, F. Microfabricated devices for capillary electrophoresis-electrospray mass spectrometry. Anal. Chem. 71, 3258–3264 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Figeys, D., Gygi, S. P., McKinnon, G. & Aebersold, R. An integrated microfluidics-tandem mass spectrometry system for automated protein analysis. Anal. Chem. 70, 3728– 3734 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Li, J. et al. Integration of microfabricated devices to capillary electrophoresis—electrospray mass spectrometry using a low dead volume connection: application to rapid analyses of proteolytic digests. Anal. Chem. 71, 3036–3045 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Eckerkorn, C. et al. Mass spectrometric analysis of blotted proteins after gel electrophoresis separation by matrix-assisted laser desorption/ionization . Electrophoresis 13, 664– 665 (1992).

    Article  Google Scholar 

  24. Strupat, K. et al. Matrix-assisted laser desorption ionization mass spectrometry of proteins electroblotted after polyacrylamide gel electrophoresis. Anal. Chem. 66, 464–470 (1994).

    Article  CAS  Google Scholar 

  25. Bienvenut, W. V. et al. Toward a clinical molecular scanner for proteome research: parallel protein chemical processing before and during western blot. Anal. Chem. 71, 4800–4807 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Binz, P. A. et al. A molecular scanner to automate proteomic research and to display proteome images. Anal. Chem. 71, 4981–4988 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Jensen, P. K. et al. Probing proteomes using capillary isoelectric focusing-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 71, 2076–2084 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Mørtz, E. et al. Sequence tag identification of intact proteins by matching tandem mass spectral data against sequence data bases. Proc. Natl. Acad. Sci. USA 93, 8264–8267 (1996).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Li, W., Hendrickson, C. L., Emmett, M. R. & Marshall, A. G. Identification of intact proteins in mixtures by alternated capillary liquid chromatography electrospray ionization and LC ESI infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 71, 4397–4402 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  30. Nuwaysir, L. & Stults, J. T. ESI mass spectrometry of phosphopeptides isolated by on-line immobilized metal affinity chromatography. J. Am. Soc. Mass Spectrom. 4, 662– 669 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Betts, J. C., Blackstock, W. P., Ward, M. A. & Anderton, B. H. Identification of phosphorylation sites on neurofilament proteins by nanoelectrospray mass spectrometry. J. Biol. Chem. 272, 12922 –12927 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Neubauer, G. & Mann, M. Mapping of phosphorylation sites of gel-isolated proteins by nanoelectrospray tandem mass spectrometry: potentials and limitations. Anal. Chem. 71, 235– 242 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, X. et al. Identification of phosphorylation sites in proteins separated by polyacrylamide gel electrophoresis. Anal. Chem. 70, 2050–2059 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286, 1162– 1166 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Soskic, V. et al. Functional proteomics analysis of signal transduction pathways of the platelet-derived growth factor beta receptor. Biochemistry 38, 1757–1764 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  36. Pandey, A. et al. Analysis of receptor signaling pathways by mass spectrometry: identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc. Natl Acad. Sci. USA 97, 179–184 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. DeRisis, J., Iyer, V. R. & Brown, O. P. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    Article  ADS  Google Scholar 

  38. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 , 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Roberts, C. J. et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287, 873–880 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Ostergaard, M., Wolf, H., Orntoft, T. F. & Celis, J. E. Psoriasin (S100A7): a putative urinary marker for the follow-up of patients with bladder squamous cell carcinomas. Electrophoresis 20, 349 –354 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Page, M. J. et al. Proteomic definition of normal human luminal and myoepithelial breast cells purified from reduction mammoplasties. Proc. Natl Acad. Sci. USA 96, 12589–12594 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gauss, C. et al. Analysis of the mouse proteome. (I) Brain proteins: separation by two-dimensional electrophoresis and identification by mass spectrometry and genetic variation. Electrophoresis 20, 575–600 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Aicher, L. et al. New insights into cyclosporine A nephrotoxicity by proteome analysis. Electrophoresis 19, 1998– 2003 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Celis, J. E. et al. A comprehensive protein resource for the study of bladder cancer: http://biobase.dk/cgi-bin/celis. Electrophoresis 20, 300–309 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  46. Breitenbach, M. et al. Biological and immunological importance of Bet v 1 isoforms . Adv. Exp. Med. Biol. 409, 117– 126 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Sander, I. et al. Allergy to aspergillus-derived enzymes in the baking industry: identification of beta-xylosidase from aspergillus niger as a new allergen (Asp n 14). J. Allergy Clin. Immunol. 102, 256–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Lueking, A., Horn, M., Eickhoff, H., Lehrach, H. & Walter, G. Protein microarrays for gene expression and antibody screening. Anal. Biochem. 270, 103– 111 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Davies, H., Lomas, L. & Austen, B. Profiling of amyloid beta peptide variants using SELDI Protein Chip arrays. Biotechniques 27, 1258 –1261 (1999).

    CAS  PubMed  Google Scholar 

  50. Nelson, R. W. The use of bioreactive probes in protein characterization. Mass Spectrom. Rev. 16, 353–376 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17, 994 –999 (1999).

    Article  CAS  Google Scholar 

  52. Neubauer, G. et al. Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry. Proc. Natl Acad. Sci. USA 94, 385–390 ( 1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lamond, A. I. & Mann, M. Cell biology and the genome projects—a concerted strategy for characterizing multi-protein complexes using mass spectrometry . Trends Cell Biol. 7, 139– 142 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Link, A. J. et al. Direct analysis of protein complexes using mass spectrometry . Nature Biotechnol. 17, 676– 682 (1999).

    Article  CAS  Google Scholar 

  55. Blackstock, W. P. & Weir, M. P. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 17, 121–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Strausberg, R. L., Feingold, E. A., Klausner, R. D. & Collins, F. S. The mammalian gene collection. Science 286, 455–457 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Neubauer, G. et al. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nature Genet. 20, 46–50 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Winter, D., Podtelejnikiov, A. V., Mann, M. & Li, R. The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Curr. Biol. 7, 519–529 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell. Biol. 148, 635–651 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Houry, W. A. et al. Identification of in vivo substrates of the chaperonin GroEL . Nature 402, 147–154 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Witke, W. et al. In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J. 17, 967–976 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shevchenko, A. & Mann, M. in Mass Spectrometry in Biology and Medicine (eds Burlingame, A., Carr, C. A. & Baldwin, M. A.) 237–269 (Humana, Totowa, 1999).

    Google Scholar 

  63. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  Google Scholar 

  64. Rappsilber, J., Siniossoglou, S., Hurt, E. C. & Mann, M. A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry. Anal. Chem. 72, 267–275 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Rowley, A. et al. Applications of protein mass spectrometry in cell biology . Methods 20, 383–397 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Peltier, J. B. et al. Proteomics of the chloroplast. Systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell 12, 319–342 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mintz, P. J. et al. Purification and biochemical characterization of interchromatin granule clusters. EMBO J. 18, 4308– 4320 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fields, S. & Song, O. K. A novel genetic system to detect protein–protein interactions. Nature 340, 245–246 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Walhout, A. J. et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116–122 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Ito, T. et al. Toward a protein–protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl Acad. Sci. USA 97, 1143–1147 ( 2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vidal, M. & Endoh, H. Prospects for drug screening using the reverse two-hybrid system. Trends Biotechnol. 17 , 374–381 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Zozulya, S. et al. Mapping signal transduction pathways by phage display. Nature Biotechnol. 17, 1193–1198 (1999).

    Article  CAS  Google Scholar 

  74. Hufton, S. E. et al. Phage display of cDNA repertoires: the pVI display system and its applications for the selection of immunogenic ligands. J. Immunol. Methods 231, 39–51 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Martzen, M. R. et al. A biochemical genomics approach for identifying genes by the activity of their products. Science 286, 1153–1155 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Zambrowicz, B. P. et al. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392, 608– 611 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285 , 901–906 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Mattheakis, L. C., Bhatt, R. R. & Dower, W. J. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc. Natl Acad. Sci. USA 91, 9022–9026 ( 1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Roberts, R. W. & Szostak, J. W. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl Acad. Sci. USA 94, 12297–12302 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wilm, M. & Mann, M. Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68, 1– 8 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Wilm, M. et al. Femtomole sequencing of proteins from polyacrylamide gels by nano electrospray mass spectrometry. Nature 379, 466–469 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Roepstorff, P. & Fohlman, J. Proposed nomenclature for sequence ions. Biomed. Mass Spectrom. 11, 601 (1984).

    Article  CAS  PubMed  Google Scholar 

  84. Yates, J. R. Mass spectrometry. From genomics to proteomics. Trends Genet. 16, 5–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Mann, M. & Wilm, M. S. Error tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66, 4390–4399 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  86. Mann, M. A shortcut to interesting human genes: peptide sequence tags, ESTs and computers . Trends Biochem. Sci. 21, 494– 495 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Eng, J. K., McCormack, A. L. & J. R. Yates, I. An approach to correlate MS/MS data to amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  88. Yates, J. R. III Database searching using mass spectrometry data. Electrophoresis 19, 893–900 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Blagoev and M. Fernandez for their expert assistance with cell culture and immunoprecipitation experiments. We thank all other members of the Protein Interaction Laboratory for valuable discussions and comments on the manuscript and A. King, Protana A/S, for obtaining the data for the new spliceosomal protein. O. N. Jensen and A. Stensballe are acknowledged for their contributions in the analysis of phosphopeptides. A.P. was supported by the Howard Temin Award from the National Cancer Institute. This work was funded in part by a grant from the Danish National Research Foundation to M.M.'s laboratory (http://www.pil.sdu.dk) at the Center for Experimental BioInformatics (CEBI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Mann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, A., Mann, M. Proteomics to study genes and genomes. Nature 405, 837–846 (2000). https://doi.org/10.1038/35015709

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015709

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing