Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The lyase activity of the DNA repair protein β-polymerase protects from DNA-damage-induced cytotoxicity

Abstract

Small DNA lesions such as oxidized or alkylated bases are repaired by the base excision repair (BER) pathway1. BER includes removal of the damaged base by a lesion-specific DNA glycosylase, strand scission by apurinic/apyrimidinic endonuclease, DNA resynthesis and ligation2. BER may be further subdivided into DNA β-polymerase (β-pol)-dependent single-nucleotide repair and β-pol-dependent or -independent long patch repair subpathways3,4,5,6. Two important enzymatic steps in mammalian single-nucleotide BER are contributed by β-pol: DNA resynthesis of the repair patch and lyase removal of 5′-deoxyribose phosphate (dRP)2. Fibroblasts from β-pol null mice are hypersensitive to monofunctional DNA-methylating agents, resulting in increases in chromosomal damage, apoptosis and necrotic cell death3,7. Here we show that only the dRP lyase activity of β-pol is required to reverse methylating agent hypersensitivity in β-pol null cells. These results indicate that removal of the dRP group is a pivotal step in BER in vivo. Persistence of the dRP moiety in DNA results in the hypersensitivity phenotype of β-pol null cells and may signal downstream events such as apoptosis and necrotic cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sensitivity of fibroblast cell lines to MMS.
Figure 2: DNA synthesis activity of β-pol is not required to reverse the MMS hypersensitivity of β-pol null cells.
Figure 3: RP lyase activity of β-pol is sufficient to reverse the MMS hypersensitivity of β-pol null cells.
Figure 4: RP lyase activity in whole-cell extracts from stably transfected β-pol null cell lines.

Similar content being viewed by others

References

  1. Lindahl, T. & Wood, R. D. Quality control by DNA repair. Science 286, 1897–1905 ( 1999).

    Article  CAS  Google Scholar 

  2. Wilson, S. H. Mammalian base excision repair and DNA polymerase β. Mutat. Res. 407, 203–215 ( 1998).

    Article  ADS  CAS  Google Scholar 

  3. Sobol, R. W. et al. Requirement of mammalian DNA polymerase β in base-excision repair. Nature 379, 183– 186 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Biade, S., Sobol, R. W., Wilson, S. H. & Matsumoto, Y. Impairment of proliferating cell nuclear antigen-dependent apurinic/apyrimidinic site repair on linear DNA. J. Biol. Chem. 273, 898–902 (1998).

    Article  CAS  Google Scholar 

  5. Fortini, P. et al. Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. Biochemistry 37, 3575–3580 (1998).

    Article  CAS  Google Scholar 

  6. Horton, J. K., Prasad, R., Hou, E. & Wilson, S. H. Protection against methylation-induced cytotoxicity by DNA polymerase β-dependent long patch base excision repair. J. Biol. Chem. 275, 2211–2218 (2000).

    Article  CAS  Google Scholar 

  7. Ochs, K., Sobol, R. W., Wilson, S. H. & Kaina, B. Cells deficient in DNA polymerase β are hypersensitive to alkylating agent-induced apoptosis and chromosomal breakage. Cancer Res. 59, 1544–1551 (1999).

    CAS  PubMed  Google Scholar 

  8. Beard, W. A. et al. Enzyme–DNA interactions requried for efficient nucleotide incorporation and discrimination in human DNA polymerase β. J. Biol. Chem. 271, 12141–12144 (1996).

    Article  CAS  Google Scholar 

  9. Ahn, J., Werneburg, B. G. & Tsai, M. D. DNA polymerase β: structure-fidelity relationship from pre-steady-state kinetic analyses of all possible correct and incorrect base pairs for wild type and R283A mutant. Biochemistry 36, 1100–1107 (1997).

    Article  CAS  Google Scholar 

  10. Beard, W. A. & Wilson, S. H. Structural insights into DNA polymerase β fidelity: hold tight if you want it right. Chem. Biol. 5, 7–13 (1998).

    Article  Google Scholar 

  11. Pelletier, H., Sawaya, M. R., Kumar, A., Wilson, S. H. & Kraut, J. Structures of ternary complexes of rat DNA polymerase β, a DNA template-primer, and ddCTP. Science 264, 1891–1903 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Menge, K. L. et al. Structure–function analysis of the mammalian DNA polymerase β active site: role of aspartic acid 256, arginine 254, and arginine 258 in nucleotidyl transfer. Biochemistry 34, 15934 –15942 (1995).

    Article  CAS  Google Scholar 

  13. Kesti, T., Flick, K., Keranen, S., Syvaoja, J. E. & Wittenberg, C. DNA polymerase ε catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol. Cell 3, 679–685 ( 1999).

    Article  CAS  Google Scholar 

  14. Dua, R., Levy, D. L. & Campbell, J. L. Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol ε and its unexpected ability to support growth in the absence of the DNA polymerase domain. J. Biol. Chem. 274, 22283– 22288 (1999).

    Article  CAS  Google Scholar 

  15. Prasad, R. et al. Functional analysis of the amino-terminal 8-kDa domain of DNA polymerase β as revealed by site-directed mutagenesis. DNA binding and 5′-deoxyribose phosphate lyse activities. J. Biol. Chem. 273, 11121–11126 ( 1998).

    Article  CAS  Google Scholar 

  16. Prasad, R., Beard, W. A., Strauss, P. R. & Wilson, S. H. Human DNA polymerase β deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism. J. Biol. Chem. 273, 15263–15270 (1998).

    Article  CAS  Google Scholar 

  17. Matsumoto, Y., Kim, K., Katz, D. S. & Feng, J. A. Catalytic center of DNA polymerase β for excision of deoxyribose phosphate groups. Biochemistry 37, 6456–6464 (1998).

    Article  CAS  Google Scholar 

  18. Prasad, R., Dianov, G. L., Bohr, V. A. & Wilson, S. H. FEN1 stimulation of DNA polymerase β mediates an excision step in mammalian long patch base excision repair. J. Biol. Chem. 275 , 4460–4466 (2000).

    Article  CAS  Google Scholar 

  19. Price, A. & Lindahl, T. Enzymatic release of 5′-terminal deoxyribose phosphate residues from damaged DNA in human cells. Biochemistry 30, 8631–8637 (1991).

    Article  CAS  Google Scholar 

  20. Longley, M. J., Prasad, R., Srivastava, D. K., Wilson, S. H. & Copeland, W. C. Identification of 5′-deoxyribose phosphate lyase activity in human DNA polymerase γ and its role in mitochondrial base excision repair in vitro. Proc. Natl Acad. Sci. USA 95, 12244–12248 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Sandigursky, M. & Franklin, W. A. Escherichia coli single-stranded DNA binding protein stimulates the DNA deoxyribophosphodiesterase activity of exonuclease I. Nucleic Acids Res. 22, 247–250 (1994).

    Article  CAS  Google Scholar 

  22. Sandigursky, M. et al. The yeast 8-oxoguanine DNA glycosylase (Ogg1) contains a DNA deoxyribophosphodiesterase (dRpase) activity. Nucleic Acids Res. 25, 4557–4561 ( 1997).

    Article  CAS  Google Scholar 

  23. Sandigursky, M., Yacoub, A., Kelley, M. R., Deutsch, W. A. & Franklin, W. A. The Drosophila ribosomal protein S3 contains a DNA deoxyribophosphodiesterase (dRpase) activity. J. Biol. Chem. 272, 17480–17484 (1997).

    Article  CAS  Google Scholar 

  24. Dianov, G. et al. Release of 5′-terminal deoxyribose-phosphate residues from incised abasic sites in DNA by the Escherichia coli RecJ protein. Nucleic Acids Res. 22, 993– 998 (1994).

    Article  CAS  Google Scholar 

  25. Graves, R. J. Felzenszwalb, I., Laval, J. & O'Connor, T. R. Excision of 5′-terminal deoxyribose phosphate from damaged DNA is catalyzed by the Fpg protein of Escherichia coli. J. Biol. Chem. 267, 14429–14435 (1992).

    CAS  PubMed  Google Scholar 

  26. Srivastava, D. K. et al. Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps. J. Biol. Chem. 273, 21203–21209 ( 1998).

    Article  CAS  Google Scholar 

  27. Dycaico, M. J. et al. The use of shuttle vectors for mutation analysis in transgenic mice and rats. Mutat. Res. 307, 461– 478 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. A. Beard and K. R. Tindall for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel H. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobol, R., Prasad, R., Evenski, A. et al. The lyase activity of the DNA repair protein β-polymerase protects from DNA-damage-induced cytotoxicity. Nature 405, 807–810 (2000). https://doi.org/10.1038/35015598

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015598

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing