Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Re–Os isotopic evidence for a lower crustal origin of massif-type anorthosites

Abstract

Massif-type anorthosites are large igneous complexes of Proterozoic age. They are almost monomineralic, representing vast accumulations of plagioclase with subordinate pyroxene or olivine and Fe–Ti oxides—the 930-Myr-old Rogaland anorthosite province in southwest Norway1 represents one of the youngest known expressions of such magmatism. The source of the magma and geodynamic setting of massif-type anorthosites remain long-standing controversies in Precambrian geology, with no consensus existing as to the nature of the parental magmas or whether these magmas primarily originate in the Earth's mantle or crust. At present, massif-type anorthosites are believed to have crystallized from either crustally contaminated mantle-derived melts that have fractionated olivine and pyroxenes at depth2 or primary aluminous gabbroic to jotunitic melts derived from the lower continental crust3. Here we report rhenium and osmium isotopic data from the Rogaland anorthosite province that strongly support a lower crustal source for the parental magmas. There is no evidence of significantly older crust in southwest Scandinavia and models invoking crustal contamination of mantle-derived magmas fail to account for the isotopic data from the Rogaland province. Initial osmium and neodymium isotopic values testify to the melting of mafic source rocks in the lower crust with an age of 1,400–1,550 Myr.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isotopic data from Rogaland.
Figure 2: Modelling of crustal residence time for a lower crustal source derived from a mantle source with γOs = 0.
Figure 3: Modelling of a primary lower crustal source versus lower crustal contamination of a primary mantle-derived magma in γOs–ε Nd space.

Similar content being viewed by others

References

  1. Schärer, U., Wilmart, E. & Duchesne, J. C. The short duration and anorogenic character of anorthosite magmatism: U-Pb dating of the Rogaland complex, Norway. Earth Planet. Sci. Lett. 139, 335–350 (1996).

    Article  ADS  Google Scholar 

  2. Emslie, R. F. in The Deep Proterozoic Crust in the North Atlantic Provinces (eds Tobi, A. C. & Touret, J. L. R.) 39–60 (Reidel, Dordrecht, 1985).

    Book  Google Scholar 

  3. Longhi, J., Vander Auwera, J., Fram, M. S. & Duchesne, J. C. Some phase equilibrium constraints on the origin of Proterozoic (massif) anorthosites and related rocks. J. Petrol. 40, 339– 362 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Scoates, J. S. & Frost, C. D. A strontium and neodymium isotopic investigation of the Laramie anorthosites, Wyoming, USA: Implications for magma chamber processes and the evolution of magma conduits in Proterozoic anorthosites. Geochim. Cosmochim. Acta 60, 95–107 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Longhi, J., Fram, M. S., Vander Auwera, J. & Montieth, J. N. Pressure effects, kinetics, and rheology of anorthositic and related magmas. Am. Mineral. 78, 1016– 1030 (1993).

    CAS  Google Scholar 

  6. Mitchell, J. M., Scoates, J. S. & Frost, C. D. High-Al gabbros in the Laramie Anorthosite Complex, Wyoming: implications for the composition of melts parental to Proterozoic anorthosite. Contrib. Mineral. Petrol. 119, 166–180 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Demaiffe, D. & Hertogen, J. Rare earth element geochemistry and strontium isotopic composition of a massif-type anorthositic-charnockitic body: the Hidra Massif (Rogaland, SW Norway). Geochim. Cosmochim. Acta 45, 1545–1561 ( 1981).

    Article  ADS  CAS  Google Scholar 

  8. Robins, B., Tumyr, O., Tysseland, M. & Garmann, L. B. The Bjerkreim–Sokndal Layered Intrusion, Rogaland, SW Norway: Evidence from marginal rocks for a jotunite parent magma. Lithos 39, 121– 133 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Duchesne, J. C. & Hertogen, J. Le magma parental du lopolithe de Bjerkreim–Sokndal (Norvège méridionale). C. R. Acad. Sci. 306, 45– 48 (1988).

    Google Scholar 

  10. Morse, S. A. A partisan review of Proterozoic anorthosites. Am. Min. 67, 1087–1100 (1982).

    CAS  Google Scholar 

  11. Menuge, J. F. The petrogenesis of massif anorthosites: a Nd and Sr isotopic investigation of the Proterozoic of Rogaland/Vest-Agder, SW Norway. Contrib. Mineral. Petrol. 98, 363–373 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Ashwal, L. D. & Seifert, K. E. Rare-earth-element geochemistry of anorthosite and related rocks from the Adirondacks, New York, and other massif-type complexes: Summary. Geol. Soc. Am. Bull. 91, 105–107 (1980).

    Article  ADS  Google Scholar 

  13. Simmons, E. C. & Hanson, G. N. Geochemistry and origin of massif-type anorthosites. Contrib. Mineral. Petrol. 66, 119–135 ( 1978).

    Article  ADS  CAS  Google Scholar 

  14. Taylor, S. R., Campbell, I. H., McCulloch, M. T. & McLennan, S. M. A lower crustal origin for massif-type anorthosites. Nature 311, 372–374 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Stein, H. J., Morgan, J. W., Markey, R. J. & Wiszniewska, J. A Re-Os study of the Suwalki Anorthosite Massif, Northeast Poland. Geophys. J. 4, 111–114 ( 1998).

    Google Scholar 

  16. Demaiffe, D., Weis, D., Michot, J. & Duchesne, J. C. Isotopic constraints on the genesis of the Rogaland anorthositic suite (Southwest Norway). Chem. Geol. 57, 167–179 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Emslie, R. F., Hamilton, M. A. & Thériault, R. J. Petrogenesis of a Mid-Proterozoic anorthosite-mangerite-chanockite-granite (AMCG) complex: Isotopic and chemical evidence from the Nain Plutonic Suite. J. Geol. 102, 539–558 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Walker, R. J., Carlson, R. W., Shirey, S. B. & Boyd, F. R. Os, Sr, Nd and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of subcontinental lithospheric mantle. Geochim. Cosmochim. Acta 53, 1583– 1595 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Asmerom, Y. & Walker, R. J. Pb and Os isotopic constraints on the composition and rheology of the lower crust. Geology 26, 359–362 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Esser, B. K. & Turekian, K. K. The osmium isotopic composition of the continental crust. Geochim. Cosmochim. Acta 57, 3093–3104.

  21. Johnson, C. M., Shirey, S. B. & Barovich, K. M. New approaches to crustal evolution studies and the origin of granitic rocks: what can the Lu-Hf and Re-Os isotope systems tell us? Trans. R. Soc. Edinb. 87, 339– 352.

  22. Esperança, S., Carlson, R. W., Shirey, S. B. & Smith, D. Dating crust-mantle separation: Re–Os isotopic study of mafic xenoliths from central Arizona. Geology 25, 651– 654 (1997).

    Article  ADS  Google Scholar 

  23. Saal, A. E., Rudnick, R. L., Ravizza, G. E. & Hart, S. R. Re–Os isotopic evidence for the composition, formation and age of the lower continental crust. Nature 393, 58– 61 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Frick, L. R., Lambert, D. D. & Cartwright, I. Re–Os dating of metamorphism in the Lewisian Complex, NW Scotland. Goldschmidt Symp. (Heidelberg) J. Conf. Abs. 1, 85 (1996).

    Google Scholar 

  25. Versteeve, A. J. Isotope geochronology in the high-grade metamorphic Precambrian of Southwestern Norway. Geol. Surv. Norway Bull. 318, 1– 50 (1975).

    Google Scholar 

  26. Michard, A., Gurriet, P., Soudant, M. & Albarede, F. Nd isotopes in French Phanerozoic shales: external vs. internal aspects of crustal evolution. Geochim. Cosmochim. Acta 49, 601– 610 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Lambert, D. D., Foster, J. G., Frick, L. R., Ripley, E. M. & Zientek, M. L. Geodynamics of magmatic Cu-Ni-PGE sulfide deposits: New insights from the Re-Os isotope system. Econ. Geol. 93, 121–135 (1998).

    Article  CAS  Google Scholar 

  28. Andersson, M., Lie, J. E. & Husebye, E. S. Tectonic setting of post-orogenic granites within SW Fennoscandia based on deep seismic and gravity data. Terra Nova 8, 558–566 ( 1996).

    Article  ADS  Google Scholar 

  29. Duchesne, J. C., Liégeois, J. P., Vander Auwera, J. & Longhi, J. The crustal tongue melting model and the origin of massive anorthosites. Terra Nova 11, 100–105 (1999).

Download references

Acknowledgements

Financial support for Re–Os isotopic studies at Monash University derive from the Monash University Research Fund, the Australian Crustal Research Centre, and the Australian Research Council. The research reported here was supported by the Norwegian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Schiellerup.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiellerup, H., Lambert, D., Prestvik, T. et al. Re–Os isotopic evidence for a lower crustal origin of massif-type anorthosites. Nature 405, 781–784 (2000). https://doi.org/10.1038/35015546

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015546

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing