Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biological sensing of small field differences by magnetically sensitive chemical reactions

Abstract

There is evidence that animals can detect small changes in the Earth's magnetic field by two distinct mechanisms, one using the mineral magnetite as the primary sensor and one using magnetically sensitive chemical reactions1,2,3,4,5,6,7,8,9,10,11,12,13,14. Magnetite responds by physically twisting2,15, or even reorienting the whole organism in the case of some bacteria16, but the magnetic dipoles of individual molecules are too small to respond in the same way. Here we assess whether reactions whose rates are affected by the orientation of reactants in magnetic fields could form the basis of a biological compass. We use a general model, incorporating biological components and design criteria, to calculate realistic constraints for such a compass. This model compares a chemical signal produced owing to magnetic field effects with stochastic noise and with changes due to physiological temperature variation17. Our analysis shows that a chemically based biological compass is feasible with its size, for any given detection limit, being dependent on the magnetic sensitivity of the rate constant of the chemical reaction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key features of the model for biological detection of small magnetic field differences, showing what could be accomplished using biological components.
Figure 2: Fractional change in the reaction rate of the radical-pair reaction versus the magnitude of the magnetic field.

Similar content being viewed by others

References

  1. Leask, M. J. M. A physiochemical mechanism for magnetic field detection by migratory birds and homing pigeons. Nature 267, 144– 145 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Kirschvink, J. L. & Gould, J. L. Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 13, 181–201 ( 1981).

    Article  CAS  Google Scholar 

  3. Schulten, K. Magnetic field effects in chemistry and biology. Festkörperprobleme 22, 61–83 ( 1982).

    CAS  Google Scholar 

  4. Beason, R. C. & Nichols, J. E. Magnetic orientation and magnetically sensitive material in a transequatorial migratory bird. Nature 309, 151–153 ( 1984).

    Article  ADS  Google Scholar 

  5. Phillips, J. B. Two magnetoreception pathways in a migratory salamander. Science 233, 765–767 ( 1986).

    Article  ADS  CAS  Google Scholar 

  6. Schulten, K. & Windemuth, A. in Biophysical Effects of Steady Magnetic Fields (eds Maret, G., Boccara, N. & Kiepenheuer, J.) 99–106 (Springer, Berlin, 1986).

    Book  Google Scholar 

  7. Phillips, J. B. & Borland, S. C. Behavioural evidence for use of a light-dependent magnetoreception mechanism by a vertebrate. Nature 359, 142–144 ( 1992).

    Article  ADS  Google Scholar 

  8. Able, K. P. & Able, M. A. Interactions in the flexible orientation system of a migratory bird. Nature 375, 320–322 (1995).

    Article  Google Scholar 

  9. Beason, R. C., Dussourd, N. & Deutschlander, M. E. Behavioural evidence for the use of magnetic material in magnetoreception by a migratory bird. J. Exp. Biol. 198, 141–146 (1995).

    CAS  PubMed  Google Scholar 

  10. Wiltschko, W. & Wiltschko, R. Magnetic Orientation in Animals (Springer, Berlin, 1995).

    Book  Google Scholar 

  11. Walker, M. M. et al. Structure and function of the vertebrate magnetic sense. Nature 390, 371–376 ( 1997).

    Article  ADS  CAS  Google Scholar 

  12. Deutschlander, M. E., Phillips, J. B. & Borland, S. C. The case for light-dependent magnetic orientation in animals. J. Exp. Biol. 202, 891– 908 (1999).

    PubMed  Google Scholar 

  13. Deutschlander, M. E., Borland, S. C. & Phillips, J. B. Extraocular magnetic compass in newts. Nature 400, 324–325 ( 1999).

    Article  ADS  CAS  Google Scholar 

  14. Ritz, T., Adem, S. & Schulten, K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707– 718 (2000).

    Article  CAS  Google Scholar 

  15. Yorke, E. D. A possible magnetic transducer in birds. J. Theor. Biol. 77, 101–105 (1979).

    Article  CAS  Google Scholar 

  16. Blakemore, R. P., Maratea, D. & Wolfe, R. S. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J. Bacteriol. 140, 720–729 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Weaver, J. C., Vaughan, T. E. & Martin, G. T. Biological effects due to weak electric and magnetic fields: the temperature variation threshold. Biophys. J. 76, 3026–3030 (1999).

    Article  CAS  Google Scholar 

  18. Lohmann, K. J. & Lohmann, C. M. F. Detection of magnetic field intensity by sea turtles. Nature 380, 59–61 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Schulten, Z. & Schulten, K. The generation, diffusion, spin motion and recombination of radical pairs in solution in the nanosecond time domain. J. Chem. Phys. 66, 4616– 4634 (1977).

    Article  ADS  CAS  Google Scholar 

  20. Lauffenburger, D. A. & Linderman, J. L. Receptors: Models for Binding, Trafficking and Signaling (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  21. van Kampen, N. G. Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).

    MATH  Google Scholar 

  22. Kandel, E. R., Schwartz, J. H. & Jessell, T. M. Principles of Neural Science 3rd edn (Appleton and Lange, Connecticut, 1991).

    Google Scholar 

Download references

Acknowledgements

We thank J. C. Squire, A. Sastre, J. B. Phillips, G. T. Martin, S. K. Burns, R. K. Adair and E. Adair for discussions. Supported by the Massachussets Institute of Technology Electric Utilities Program Consortium and by a computer equipment grant from Stadwerke Düsseldorf, Düsseldorf, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Weaver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, J., Vaughan, T. & Astumian, R. Biological sensing of small field differences by magnetically sensitive chemical reactions. Nature 405, 707–709 (2000). https://doi.org/10.1038/35015128

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015128

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing