Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Correlated electron emission in multiphoton double ionization

Abstract

Electronic correlations govern the dynamics of many phenomena in nature, such as chemical reactions and solid state effects, including superconductivity. Such correlation effects can be most clearly investigated in processes involving single atoms. In particular, the emission of two electrons from an atom—induced by the impact of a single photon1, a charged particle2 or by a short laser pulse3—has become the standard process for studies of dynamical electron correlations. Atoms and molecules exposed to laser fields that are comparable in intensity to the nuclear fields have extremely high probabilities for double ionization4,5; this has been attributed to electron–electron interaction3. Here we report a strong correlation between the magnitude and the direction of the momentum of two electrons that are emitted from an argon atom, driven by a femtosecond laser pulse (at 38 TW cm-2). Increasing the laser intensity causes the momentum correlation between the electrons to be lost, implying that a transition in the laser–atom coupling mechanism takes place.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Momentum correlation between the Ar+ ion and electrons created in the focus of a 220-fs, 800-nm laser pulse at peak intensities of 3.8 × 1014 W cm-2.
Figure 2: Momentum correlation between the two emitted electrons when an Ar2+ ion is produced in the focus of a 220-fs, 800-nm laser pulse at peak intensities of 3.8 × 1014 W cm-2 (a) and 15 × 1014 W cm-2 (b).

Similar content being viewed by others

References

  1. Briggs, J. S. & Schmidt, V. Differential cross sections for photo-double-ionization of the helium atom. J. Phys. B 33, R1–R48 (2000).

    Article  ADS  CAS  Google Scholar 

  2. Moshammer, R. et al. Double ionization of helium and neon for fast heavy-ion impact: Correlated motion of electrons from bound to continuum states. Phys. Rev. Lett. 77, 1242–1245 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Lambropoulos, P., Maragakis, P. & Zhang, J. Two-electron atoms in strong fields. Phys. Rep. 305, 203–293 ( 1998).

    Article  ADS  CAS  Google Scholar 

  4. Fittinghoff, D. N., Bolton, P. R., Chang, B. & Kulander, K. C. Observation of nonsequential double ionization of helium with optical tunneling. Phys. Rev. Lett. 69, 2642–2645 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Walker, B. et al. Precision measurement of strong field double ionization of helium. Phys. Rev. Lett. 73, 1227– 1231 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Kulander, K. C., Cooper, J. & Schafer, K. J. Laser-assisted inelastic rescattering during above threshold ionization. Phys. Rev. A 51, 561 –568 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Liu, W. C., Eberly, J. H., Haan, S. L. & Grobe, R. Correlation effects in two-electron model atoms in intense laser fields. Phys. Rev. Lett. 85, 520–523 (1999).

    Article  ADS  Google Scholar 

  9. Watson, J. B., Sanpera, A., Lappas, D. G., Knight, P. L. & Burnett, K. Nonsequential double ionization of helium. Phys. Rev. Lett. 78, 1884– 1887 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Lappas, D. G. & van Leeuwen, R. Electron correlation effects in the double ionization of He. J. Phys. B 31, L249– 256 (1998).

    Article  ADS  CAS  Google Scholar 

  11. LaGattuta, K. J. & Cohen, J. S. Quasiclassical modelling of helium double photoionisation. J. Phys. B 31, 5281–5291 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Becker, A. & Faisal, F. H. M. Mechanism of laser-induced double ionization of helium. J. Phys. B 29, L197–202 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Becker, A. & Faisal, F. H. M. S-matrix analysis of ionization yields of noble gas atoms at the focus of Ti:sapphire laser pulses. J. Phys. B 32, L335–L343 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Schafer, K. J., Yang, B., DiMauro, L. F. & Kulander, K. C. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Fittinghoff, D. N., Bolton, P. R., Chang, B. & Kulander, K. C. Polarization dependence of tunneling ionization of helium and neon by 120-fs pulses at 614 nm. Phys. Rev. A 49, 2174– 2177 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Sheehy, B., Lafon, R., Widmer, M., Walker, B. & DiMauro, L. F. Single- and multiple-electron dynamics in the strong-field tunneling limit. Phys. Rev. A 58, 3942– 3952 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Becker, A. & Faisal, F. H. M. Interplay of electron correlation and intense field dynamics in the double ionization of helium. Phys. Rev. A 59, R1742–R1745 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Weber, T. et al. Recoil-ion momentum distributions for single and double ionization of helium in strong laser fields. Phys. Rev. Lett. 84, 443–446 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Weber, T. et al. Sequential and nonsequential contributions to double ionization in strong laser fields. J. Phys. B 33, L128– L133 (2000).

    Article  Google Scholar 

  20. Moshammer, R. et al. Momentum distributions of Ne ions created by an intense ultrashort laser pulse. Phys. Rev. Lett. 84, 447– 450 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Dörner, R. et al. Cold target recoil ion momentum spectroscopy. Phys. Rep. 330, 95–192 ( 2000).

    Article  ADS  Google Scholar 

  22. Ullrich, J. et al. Cold target recoil ion momentum spectroscopy. J. Phys. B 30, 2917–2974 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Dörner, R. et al. Photo double ionization of He: Fully differential and absolute electronic and ionic momentum distributions. Phys. Rev. A 57, 1074–1090 (1998).

    Article  ADS  Google Scholar 

  24. DiMauro, L. F. & Agostini, P. in Advances in Atomic and Molecular Physics 79–120 (Academic, New York, 1995).

    Google Scholar 

  25. Larochelle, S., Talebpour, A. & Chin, S. L. Non-sequential multiple ionization of rare gas atoms in a Ti:Sapphire laser field. J. Phys. B 31, 1201–1214 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Becker, A. & Faisal, F. H. M. Interpretation of momentum distribution of recoil ions from laser induced non-sequential double ionization. Phys. Rev. Lett. 84, 3546– 3549 (2000).

    Article  ADS  CAS  Google Scholar 

  27. Dörner, R. et al. Fully differential cross sections for double photoionization of He near threshold measured by recoil ion momentum spectroscopy. Phys. Rev. Lett. 77, 1024–1027 (1996).

    Article  ADS  Google Scholar 

  28. Taylor, K. T., Parker, J. S., Dundas, D., Smyth, E. & Vitirito, S. Laser driven helium in full-dimensionality. Laser Phys. 9, 98–116 (1999).

    CAS  Google Scholar 

  29. Lein, M., Gross, E. K. U. & Engel, V. On the mechanism of strong-field double photoionisation in the helium atom. J. Phys. B 33, 433– 442 (2000).

    Article  ADS  CAS  Google Scholar 

  30. Dörr, M. Double ionization in a one-cycle laser pulse. Optics Express 6, 111–116 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Schmidt-Böcking for enthusiastic support, and R. Moshammer and J. Ullrich for helpful discussons. Our analysis of the influence of the laser field on the final state momenta emerged after fruitful discussion with A. Becker and F. H. M. Faisal. We are grateful to W. W. Rühle for continuous support and thank Roentdek GmbH for providing the position sensitive detectors. This work is supported by DFG, BMBF, GSI and DAAD. R.D. is supported by the Heisenberg Programme of the DFG. The Marburg group thanks the Land Hessen and the DFG for support through the SFB383 and their Graduiertenkolleg ‘Optoelektronik mesoskopischer Halbleiter’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dörner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, T., Giessen, H., Weckenbrock, M. et al. Correlated electron emission in multiphoton double ionization. Nature 405, 658–661 (2000). https://doi.org/10.1038/35015033

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015033

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing