Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes

Abstract

ALTHOUGH it is widely accepted that the plastids of plants and algae originated as endosymbionts1, the details of this evolutionary process are unclear2'3. It has been proposed that in organisms whose plastids are surrounded by more than two membranes, the endosymbiont was a eukaryotic alga rather than a photosynthetic prokaryote4. The DNA-containing5 nucleomorph6 of cryptomonad algae appears to be the vestigial nucleus of such an algal endosymbiont7. Eukaryotic-type ribosomal RNA sequences have been localized to a nucleolus-like structure in the nucleomorph8. In support of the hypothesis that cryptomonads are evolutionary chimaeras of two distinct eukaryotic cells, we show here that Cryptomonas Φ contains two phylogenetically separate, nuclear-type small-subunit rRNA genes, both of which are transcriptionally active. We incorporate our rRNA sequence data into phylogenetic trees, from which we infer the evolutionary ancestry of the host and symbiont components of Cryptomonas Φ. Such trees do not support the thesis3 that chromophyte algae evolved directly from a cryp-tomonad-like ancestor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gray, M. W. Trends Genet. 5, 294–299 (1989).

    Article  CAS  Google Scholar 

  2. Whatley, J. M. & Whatley, F. R. New Phytol. 87, 233–247 (1981).

    Article  CAS  Google Scholar 

  3. Cavalier-Smith, T. Biol. J. Linn. Soc. 17, 289–306 (1982).

    Article  Google Scholar 

  4. Gibbs, S. P. Ann. N.Y. Acad. Sci. 391, 193–208 (1981).

    Article  ADS  Google Scholar 

  5. Ludwig, M. & Gibbs, S. P. Protoplasma 127, 9–20 (1985).

    Article  Google Scholar 

  6. Greenwood, A. D., Griffiths, H. B. & Santore, U. J. Br. Phycol. J. 12, 119 (1977).

    Google Scholar 

  7. Ludwig, M. & Gibbs, S. P. Ann. N.Y. Acad. Sci. 503, 198–211 (1987).

    Article  ADS  Google Scholar 

  8. McFadden, G. I. J. Cell Sci. 95, 303–308 (1990).

    CAS  Google Scholar 

  9. Sogin, M. L. in PCR Protocols. A Guide to Methods and Applications (eds Innes, M. A. et al.) 307–314 (Academic, San Diego, 1990).

    Google Scholar 

  10. Neefs, J.-M., Van de Peer, Y., Henriks, L. & De Wachter, R. Nucleic Acids Res. 18 (suppl.), 2237–2247 (1990).

    Article  CAS  Google Scholar 

  11. Gray, M. W., Sankoff, D. & Cedergren, R. J. Nucleic Acids Res. 12, 5837–5852 (1984).

    Article  CAS  Google Scholar 

  12. Dahlberg, A. E. Cell 57, 525–529 (1989).

    Article  CAS  Google Scholar 

  13. Douglas, S. E. Curr. Genet. 14, 591–598 (1988).

    Article  CAS  Google Scholar 

  14. Schnare, M. N., Heinonen, T. Y. K., Young, P. G. & Gray, M. W. J. biol. Chem. 261, 5187–5193 (1986).

    CAS  PubMed  Google Scholar 

  15. Swofford, D. L. PAUP Version 3.0. Illinois Natural History Survey (Champagne, Illinois, 1989).

  16. Felsentein, J. PHYLIP Manual Version 3.3 (Herbarium, Univ. California, Berkeley, 1990).

  17. Saitou, N. & Nei, M. Molec. biol. Evol. 4, 406–425 (1987).

    CAS  Google Scholar 

  18. Gunderson, J. H., Elwood, H. J., Ingold, A., Kindle, K. & Sogin, M. L. Proc. natn. Acad. Sci. U.S.A. 84, 5823–5827 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Bhattacharya, D., Elwood, H. J., Goff, L. J. & Sogin, M. L. J. Phycol. 26, 181–186 (1990).

    Article  CAS  Google Scholar 

  20. Perasso, R., Baroin, A., Qu, L. H., Bachellerie, J. P. & Adoutte, A. Nature 339, 142–144 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Cavalier-Smith, T. Prog. Phycol. Res. 4, 309–347 (1986).

    Google Scholar 

  22. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  23. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  24. Douglas, S. E. & Durnford, D. G. Plant molec. Biol. 13, 13–20 (1989).

    Article  CAS  Google Scholar 

  25. Bird, C. J., Rice, E. L., Murphy, C. A., Liu, Q. Y. & Ragan, M. A. Nucleic Acids Res. 18, 4023–4024 (1990).

    Article  CAS  Google Scholar 

  26. Hendriks, L. et al. System appl. Microbiol. 12, 223–229 (1989).

    Article  CAS  Google Scholar 

  27. Kimura, M. J. molec. Evol. 16, 111–120 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douglas, S., Murphy, C., Spencer, D. et al. Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature 350, 148–151 (1991). https://doi.org/10.1038/350148a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350148a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing