Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres

Abstract

Photonic technology, using light instead of electrons as the information carrier, is increasingly replacing electronics in communication and information management systems. Microscopic light manipulation, for this purpose, is achievable through photonic bandgap materials1,2, a special class of photonic crystals in which three-dimensional, periodic dielectric constant variations controllably prohibit electromagnetic propagation throughout a specified frequency band. This can result in the localization of photons3,4,5,6, thus providing a mechanism for controlling and inhibiting spontaneous light emission that can be exploited for photonic device fabrication. In fact, carefully engineered line defects could act as waveguides connecting photonic devices in all-optical microchips7, and infiltration of the photonic material with suitable liquid crystals might produce photonic bandgap structures (and hence light-flow patterns) fully tunable by an externally applied voltage8,9,10. However, the realization of this technology requires a strategy for the efficient synthesis of high-quality, large-scale photonic crystals with photonic bandgaps at micrometre and sub-micrometre wavelengths, and with rationally designed line and point defects for optical circuitry. Here we describe single crystals of silicon inverse opal with a complete three-dimensional photonic bandgap centred on 1.46 µm, produced by growing silicon inside the voids of an opal template of close-packed silica spheres that are connected by small ‘necks’ formed during sintering, followed by removal of the silica template. The synthesis method is simple and inexpensive, yielding photonic crystals of pure silicon that are easily integrated with existing silicon-based microelectronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Silicon-infiltrated opal.
Figure 2: SEM images of internal facets of silicon inverse opal: a, [110] facet.
Figure 3: Band structure of silicon inverse opal with an 88% infiltration of Si into the available opal template voids.
Figure 4: Reflection spectrum from the inverse silicon opal.

Similar content being viewed by others

References

  1. John, S. Strong localization of photons in certain disordered dielectric lattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. John, S. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett. 53, 2169–2172 (1984).

    Article  ADS  Google Scholar 

  4. Anderson, P. W. The question of classical localization: A theory of white paint? Phil. Mag. B 52, 505–509 (1985).

    Article  ADS  CAS  Google Scholar 

  5. John, S. Localization of light. Phys. Today 44, 32–40 (1991).

    Article  ADS  Google Scholar 

  6. Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671–673 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Busch, K. & John, S. Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum. Phys. Rev. Lett. 83, 967–970 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Yablonovitch, E. Liquid versus photonic crystals. Nature 401, 539–541 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Leonard, S. W. et al. Tunable two-dimensional photonic crystals using liquid crystal infiltration. Phys. Rev. B 61, 2389–2392 (2000).

    Article  ADS  Google Scholar 

  11. Lin, S. Y. & Fleming, J. G. A. Three-dimensional optical photonic crystal. IEEE J. Lightwave Technol. 17, 1944–1947 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Noda, S., Yamamoto, N., Imada, M., Kobayashi, H. & Okano, M. A three-dimensional optical photonic crystal. IEEE J. Lightwave Technol. 17, 1948–1955 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Míguez, H. et al. Photonic crystal properties of packed submicrometric SiO2 spheres. Appl. Phys. Lett. 71, 1148–1150 (1997).

    Article  ADS  Google Scholar 

  14. Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range J. Colloid Interface Sci. 26, 62–69 (1968).

    Article  ADS  Google Scholar 

  15. Míguez, H. et al. Control of the photonic crystal properties of fcc packed submicrometer SiO2 spheres by sintering. Adv. Mater. 10, 480–483 (1999).

    Article  Google Scholar 

  16. Busch, K. & John, S. Photonic band gap formation in certain self-organizing systems. Phys. Rev. E 58, 3896–3908 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Chomski, E., Dag, Ö., Kuperman, A. & Ozin, G. A. New forms of luminescent silicon: silicon-silica composite mesostructures. Chem. Vap. Dep. 2, 8–13 (1996).

    Article  CAS  Google Scholar 

  18. Dag, Ö., Ozin, G. A., Yang, H., Reber, C. & Bussière, G. Photoluminescent silicon clusters in oriented hexagonal mesoporous silica film. Adv. Mater. 11, 474–480 (1999).

    Article  CAS  Google Scholar 

  19. Bogomolov, N. N. et al. Fabrication of regular three-dimensional lattices of submicron silicon clusters in a SiO2 matrix. Pis’ma Zh. Tekh Fiz. 24, 90–95 (1998); also Technol. Phys. Lett. 24, 326–327 (1998).

    Google Scholar 

  20. Holland, B. T., Blanford, C. F. & Stein, A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281, 538–540 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Wijnhoven, J. E. G. J. & Vos, W. L. Preparation of photonic crystals made of air spheres in titania. Science 281, 802–804 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Zakhidov, A. A. et al. Carbon structures with three-dimensional periodicity at optical wavelengths. Science 282, 897–901 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Vlasov, Y. A., Yao, N. & Norris, D. J. Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots. Adv. Mater. 11, 165–169 (1999).

    Article  CAS  Google Scholar 

  24. Braun, P. V. & Wiltzius, P. Electrochemically grown photonic crystals. Nature 402, 603–604 (1999).

    Article  ADS  CAS  Google Scholar 

  25. John, S. & Busch, K. Photonic bandgap formation and tunability in certain self-organizing systems. J. Lightwave Technol. 17, 1931–1943 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Vlasov, Yu. A., Astratov, V. N., Karimov, O. Z. & Kaplyanskii, A. A. Existence of a photonic pseudogap for visible light in synthetic opals. Phys. Rev. B 55, R13357–R13360 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Ashcroft, N. & Mermin, D. Solid State Physics 161 (Holt, Rinehart & Winston, New York, 1976).

    Google Scholar 

  28. Ho, K. M., Chan, C. T. & Soukoulis, C. M. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152–3155 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Xia, Y. & Whitesides, G. M. Soft lithography. Angew. Chem. Int. Edn Engl. 37, 550–575 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada, Photonics Research Ontario, the Fundacion Ramon Areces, the Spanish CICyT project and the European Community Project. We are grateful to I. Sokolov and N. Coombs for their technical assistance with the AFM and SEM images (Figs 1 and 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajeev John.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanco, A., Chomski, E., Grabtchak, S. et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405, 437–440 (2000). https://doi.org/10.1038/35013024

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35013024

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing