Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa lavas

Abstract

The hypothesis that mantle plumes contain recycled oceanic crust1 is now widely accepted. Some specific source components of the Hawaiian plume have been inferred to represent recycled oceanic basalts2, pelagic sediments3,4 or oceanic gabbros5. Bulk lava compositions, however, retain the specific trace-element fingerprint of the original crustal component in only a highly attenuated form. Here we report the discovery of exotic, strontium-enriched melt inclusions in Mauna Loa olivines. Their complete trace-element patterns strongly resemble those of layered gabbros found in ophiolites, which are characterized by cumulus plagioclase with very high strontium abundances6. The major-element compositions of these melts indicate that their composition cannot be the result of the assimilation of present-day oceanic crust through which the melts have travelled. Instead, the gabbro has been transformed into a (high-pressure) eclogite by subduction and recycling, and this eclogite has then been incorporated into the Hawaiian mantle plume. The trace-element signature of the original plagioclase is present only as a ‘ghost’ signature, which permits specific identification of the recycled rock type. The ‘ghost plagioclase’ trace-element signature demonstrates that the former gabbro can retain much of its original chemical identity through the convective cycle without completely mixing with other portions of the former oceanic crust.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Al2O3 versus MgO in lavas and inclusions.
Figure 2: Incompatible-element patterns in melt inclusions, lavas and ophiolitic gabbros normalized to the composition of primitive mantle (PM)30.
Figure 3: Sr/Ce versus La/Sm ratios of melt inclusions in olivine and host lavas, normalized to primitive mantle values30.
Figure 4: Sr/Ce, Al2O3/CaO and Al2O3/TiO2 ratios in melt inclusions versus forsterite content of host olivine.

Similar content being viewed by others

References

  1. Hofmann,A. W. & White,W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421– 436 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Lassiter,J. C. & Hauri,E. H. Osmium-isotope variations in Hawaiian lavas: Evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet. Sci. Lett. 164, 483– 496 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Hauri,E. H. Major element variability in the Hawaiian mantle plume. Nature 382, 415–419 ( 1996).

    Article  ADS  CAS  Google Scholar 

  4. Blichert-Toft,J., Frey,F. A. & Albarede, F. Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science 285, 879– 882 (1999).

    Article  CAS  Google Scholar 

  5. Hofmann,A. W. & Jochum,K. P. Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaiian Scientific Drilling Project. J. Geophys. Res. 101, 11831–11839 (1996).

    Article  ADS  Google Scholar 

  6. Zimmer,M., Kröner,A., Jochum,K. P., Reischmann,T. & Todt,W. The Gabal Gerf complex: A Precambrian N-MORB ophiolite in the Nubian Shield, NE Africa. Chem. Geol. 123, 29–51 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Danyushevsky,L. V. The effect of small amounts of H2O on fractionation of mid-ocean ridge magmas. Eos 79 (suppl.), S375 (1998).

    Google Scholar 

  8. Rhodes,J. M. & Hart,S. R. in Mauna Loa Revealed: Structure, Composition, History And Hazards (eds Rhodes, J. M. & Lockwood, J. P.) 263–288 (Geophysical Monograph No. 92, American Geophysical Union, Washington, DC, 1995).

    Google Scholar 

  9. Sobolev,A. V. & Shimizu,N. Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature 363 , 151–154 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Sobolev,A. V. Melt inclusions in minerals as a source of principal petrological information. Petrology 4, 209–220 (1996).

    Google Scholar 

  11. Gurenko,A. A. & Chaussidon,M. Enriched and depleted primitive melts included in olivine from Icelandic tholeiites - origin by continuous melting of a single mantle column. Geochim. Cosmochim. Acta 59, 2905–2917 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Kamenetsky,V. S. et al. Calcic melt inclusions in primitive olivine at 43 degrees N MAR: evidence for melt-rock reaction/melting involving clinopyroxene-rich lithologies during MORB generation. Earth Planet. Sci. Lett. 160, 115–132 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Sobolev,A. V. & Nikogosian,I. K. Petrology of long-lived mantle plume magmatism: Hawaii (Pacific) and Reunion Island (Indian Ocean). Petrology 2, 111–144 ( 1994).

    Google Scholar 

  14. Veksler,I. V., Petibon,C., Jenner,G. A., Dorfman,A. M. & Dingwell, D. B. Trace element partitioning in immiscible silicate-carbonate liquid systems: an initial experimental study using a centrifuge autoclave. J. Petrol. 39, 2095–2104 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Christensen,U. R. & Hofmann,A. W. Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res. 99, 19867–19884 ( 1994).

    Article  ADS  CAS  Google Scholar 

  16. Allègre,C. J. & Turcotte,D. L. Implications of a two-component marble-cake mantle. Nature 323, 123–127 (1986).

    Article  ADS  Google Scholar 

  17. Sobolev,S. V. & Babeyko,A. Y. Modeling of mineralogical composition, density and elastic-wave velocities in anhydrous magmatic rocks. Surv. Geophys. 15, 515–544 (1994).

    Article  ADS  Google Scholar 

  18. Snyder,G. A. et al. The origins of Yakutian eclogite xenoliths. J. Petrol. 38, 85–113 ( 1997).

    Article  ADS  CAS  Google Scholar 

  19. Yasuda,A., Fujii,T. & Kurita,K. Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: Implications for the behavior of subducted oceanic crust in the mantle. J. Geophys. Res. 99, 9401– 9414 (1994).

    Article  ADS  Google Scholar 

  20. Yaxley,G. M. & Green,D. H. Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz. Mineral. Petrogr. Mitt. 78, 243–255 (1998).

    CAS  Google Scholar 

  21. Eiler,J. M., Farley,K. A., Valley,J. W., Hofmann,A. W. & Stolper,E. M. Oxygen isotope constraints on the sources of Hawaiian volcanism. Earth Planet. Sci. Lett. 144, 453–468 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Stakes,D. S. & Taylor,H. P. The northern Samail ophiolite - an oxygen isotope, microprobe, and field-study. J. Geophys. Res. B 97, 7043–7080 ( 1992).

    Article  ADS  CAS  Google Scholar 

  23. Hart,S. R., Blusztajn,J., Dick,H. J. B., Meyer,P. S. & Muehlenbachs,K. The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochim. Cosmochim. Acta 63, 4059–4080 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Hart,S. R. Equilibration during mantle melting - a fractal tree model. Proc. Natl Acad. Sci. USA 90, 11914–11918 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Rhodes,J. M. Geochemistry of the 1984 Mauna Loa eruption - implications for magma storage and supply. J. Geophys. Res. B 93, 4453– 4466 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Stolper,E. M., DePaolo,D. J. & Thomas, D. M. Introduction to special section: Hawaii Scientific Drilling Project. J. Geophys. Res. 101, 11593–11598 (1996).

    Article  ADS  Google Scholar 

  27. Sharp,W. D., Turrin,B. D., Renne,P. R. & Lanphere,M. A. The 40Ar/39Ar and K/Ar dating of lavas from the Hilo 1-km core hole, Hawaii Scientific Drilling Project. J. Geophys. Res. 101, 11607–11616 (1996).

    Article  ADS  Google Scholar 

  28. Roedder,E. Fluid inclusions. Rev. Mineral 12, 1– 644 (1984).

    Google Scholar 

  29. Danyushevsky L. V., Della-Pasqua,F. N. & Sokolov, S. Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implication. Contrib. Mineral. Petrol. 138, 68– 83 (2000).

    Article  ADS  Google Scholar 

  30. Hofmann,A. W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988).

    Article  ADS  CAS  Google Scholar 

  31. Garcia,M. O. Petrography, olivine and glass chemistry of lavas from the Hawaii Scientific Drilling Project. J. Geophys. Res. 101, 11701–11713 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the HSDP team for providing samples. We thank S. Simakin for ion probe analyses of inclusions; L.V. Danyushevsky for the access to PETROLOG thermodynamic modelling software; S.V. Sobolev for modelling phase compositions at high T-P; P. Kelemen for providing unpublished data on Oman Gabbro; E. Macsenaere-Riester for help with the electron microprobe analyses; F. Künstler for preparing doubly polished sections; and F. Frey, J. Eiler, L.V. Danuyshevsky, V. S. Kamenetsky, A. A. Gurenko and S. R. Hart for comments that helped to improve the clarity of the manuscript. This work was supported by Deutsche Forschungsgemeinschaft and the Russian Foundation of Basic Research (A.V.S. and I.K.N.) and an Alexander von Humboldt award (A.V.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Sobolev.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobolev, A., Hofmann, A. & Nikogosian, I. Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa lavas. Nature 404, 986–990 (2000). https://doi.org/10.1038/35010098

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35010098

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing