Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coulomb-blockade transport in single-crystal organic thin-film transistors

Abstract

Coulomb-blockade transport—whereby the Coulomb interaction between electrons can prohibit their transport around a circuit—occurs in systems in which both the tunnel resistance, RT, between neighbouring sites is large (h/e2) and the charging energy, EC (EC = e2/2C, where C is the capacitance of the site), of an excess electron on a site is large compared to kT. (Here e is the charge of an electron, k is Boltzmann's constant, and h is Planck's constant.) The nature of the individual sites—metallic, superconducting, semiconducting or quantum dot—is to first order irrelevant for this phenomenon to be observed1. Coulomb blockade has also been observed in two-dimensional arrays of normal-metal tunnel junctions2, but the relatively large capacitances of these micrometre-sized metal islands results in a small charging energy, and so the effect can be seen only at extremely low temperatures. Here we demonstrate that organic thin-film transistors based on highly ordered molecular materials can, to first order, also be considered as an array of sites separated by tunnel resistances. And as a result of the sub-nanometre sizes of the sites (the individual molecules), and hence their small capacitances, the charging energy dominates at room temperature. Conductivity measurements as a function of both gate bias and temperature reveal the presence of thermally activated transport, consistent with the conventional model of Coulomb blockade.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic sample layout.
Figure 2: Room-temperature current–voltage characteristics of a single-crystal pentacene TFT with gap length of 8 µm and width of 16 µm.
Figure 3: Charge transport data of the pentacene TFT shown in Fig. 2.
Figure 4: Comparison of the charge transport data of α-4T, α-6T and pentacene.

Similar content being viewed by others

References

  1. Grabert,H. & Devoret,M. H. in Single Charge Tunneling (eds Grabert, H. & Devoret, M. H.) Ch. 1 (NATO ASI Ser., Plenum, New York, 1992).

    Book  Google Scholar 

  2. Mooij,J. E. et al. Unbinding of charge-anticharge pairs in 2-dimensional arrays of small tunnel-junctions. Phys. Rev. Lett. 65, 645–649 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Horowitz,G., Hajlaoui,R. & Delannoy,P. Temperature-dependence of the field-effect mobility of sexithiophene—determination of the density of traps. J. Phys. III 5, 355–371 (1995).

    CAS  Google Scholar 

  4. Nelson,S. F., Lin,Y.-Y., Gundlach,D. J. & Jackson,T. N. Temperature-independent transport in high-mobility pentacene transistors. Appl. Phys. Lett. 72, 1854–1856 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Schön,J. H. & Batlogg,B. Modeling of the temperature dependence of the field-effect mobility in thin film devices of conjugated oligomers. Appl. Phys. Lett. 74, 260–262 (1999).

    Article  ADS  Google Scholar 

  6. Waragai,K., Akimichi,H., Hotta,S. & Kano,H. Charge transport in thin-films of semiconducting oligothiophenes. Phys. Rev. B 52, 1786–1792 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Torsi,L., Dodabalapur,A., Rothberg,L. J., Fung,A. W. P. & Katz,H. E. Intrinsic transport properties and performance limits of organic field-effect transistors. Science 272, 1462–1464 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Torsi,L., Dodabalapur,A., Rothberg,L. J., Fung,A. W. P. & Katz,H. E. Charge transport in oligothiophene field-effect transistors. Phys. Rev. B 57, 2271–2275 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Vrijmoeth,J., Stok,R. W., Veldman,R., Schoonvelt,W. A. & Klapwijk,T. M. Single crystallites in “planar polycrystalline” oligothiophene films: Determination of orientation and thickness by polarization microscopy. J. Appl. Phys. 83, 3816–3824 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Bouchoms,I. P. M., Schoonveld,W. A., Vrijmoeth,J. & Klapwijk,T. M. Morphology identification of the thin film phases of vacuum evaporated pentacene on SiO2 substrates. Synth. Met. 104, 175–178 (1999).

    Article  CAS  Google Scholar 

  11. Schoonveld,W. A., Vrijmoeth,J. & Klapwijk,T. M. Intrinsic charge transport properties of an organic single crystal determined using a multiterminal thin-film transistor. Appl. Phys. Lett. 73, 3884–3886 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Brown,A. R., Jarrett,C. P., De Leeuw,D. M. & Matters,M. Field-effect transistors made from solution-processed organic semiconductors. Synth. Met. 88, 37–55 (1997).

    Article  CAS  Google Scholar 

  13. Vissenberg,M. C. J. M. & Matters,M. Theory of the field-effect mobility in amorphous organic transistors. Phys. Rev. B 57, 12964–12967 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Schoeler,H. in Mesoscopic Electron Transport (eds Sohn, L. L., Kouwenhoven, L. P. & Schön, G.) Ch. 1 (NATO ASI Ser., Kluwer Academic, Dordrecht, 1997).

    Google Scholar 

  15. Porzio,W., Destri,S., Mascherpa,M. & Brückner,S. Structural aspects of oligothienyl series from X-ray-powder diffraction data. Acta. Polymer. 44, 266–272 (1993).

    Article  CAS  Google Scholar 

  16. Horowitz,G. et al. Growth and characterization of sexithiophene single-crystals. Chem. Mater. 7, 1337–1341 (1995).

    Article  CAS  Google Scholar 

  17. Campbell,R. B., Robertson,J. M. & Trotter,J. The crystal structure of hexacene, and a revision of the crystallographic data for tetracene. Acta Crystallogr. 15, 289–299 (1962).

    Article  CAS  Google Scholar 

  18. Holstein,T. Studies of polaron motion Part I. The molecular-crystal model. Ann. Phys. 8, 325–387 (1959).

    Article  ADS  CAS  Google Scholar 

  19. Silinsh,E. A. & Càpek,V. Organic Molecular Crystals (AIP Press, New York, 1994).

    Google Scholar 

  20. Geigenmüller,U. & Schön,G. Single-electron effects in arrays of normal tunnel-junctions. Europhys. Lett. 10, 765–770 (1989).

    Article  ADS  Google Scholar 

  21. Bobbert,P. A., Geigenmüller,U., Fazio,R. & Schön,G. in Macroscopic Quantum Phenomena (eds Clark, T. et al.) 119–122 (World Scientific, New York, 1990).

    Google Scholar 

Download references

Acknowledgements

We thank J. Vrijmoeth for his stimulating and crucial role in the early stages of this work, M. Mulder for support in sample fabrication and D. B. A. Rep for contributions to finalizing the manuscript. We also acknowledge encouragement and support from G. Hadziioannou. This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) through the Strichting voor Fundamenteel Onderzoek der Materie (FOM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Schoonveld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoonveld, W., Wildeman, J., Fichou, D. et al. Coulomb-blockade transport in single-crystal organic thin-film transistors. Nature 404, 977–980 (2000). https://doi.org/10.1038/35010073

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35010073

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing