Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Induction of visual orientation modules in auditory cortex

Abstract

Modules of neurons sharing a common property are a basic organizational feature of mammalian sensory cortex. Primary visual cortex (V1) is characterized by orientation modules—groups of cells that share a preferred stimulus orientation—which are organized into a highly ordered orientation map. Here we show that in ferrets in which retinal projections are routed into the auditory pathway, visually responsive neurons in ‘rewired’ primary auditory cortex are also organized into orientation modules. The orientation tuning of neurons within these modules is comparable to the tuning of cells in V1 but the orientation map is less orderly. Horizontal connections in rewired cortex are more patchy and periodic than connections in normal auditory cortex, but less so than connections in V1. These data show that afferent activity has a profound influence on diverse components of cortical circuitry, including thalamocortical and local intracortical connections, which are involved in the generation of orientation tuning, and long-range horizontal connections, which are important in creating an orientation map.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Orientation maps in ‘rewired’ A1 and normal V1.
Figure 2: Optically imaged orientation maps and single cell responses in rewired ferret auditory cortex.
Figure 3: Patterns of long-range horizontal connections in V1, normal A1 and rewired A1.
Figure 4: Correlation of optical imaging maps with intrinsic horizontal connections in normal V1 and rewired A1.
Figure 5: The periodicity of horizontal connections in normal V1, normal A1 and rewired A1.

Similar content being viewed by others

References

  1. Katz,L. C. & Shatz,C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133– 1138 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Yuste,R. & Sur,M. Development and plasticity of the cerebral cortex: from molecules to maps. J. Neurobiol. 41, 1–6 (1999).

    Article  CAS  Google Scholar 

  3. Shatz,C. J. & Stryker,M. P. Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J. Physiol. 281, 267–283 (1978).

    Article  CAS  Google Scholar 

  4. Crowley & Katz,L. C. Development of ocular dominance columns in the absence of retinal input. Nature Neurosci. 2 , 1125–1130 (1999).

    Article  CAS  Google Scholar 

  5. Ferster,D., Chung,S. & Wheat,H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380, 249–252 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Somers,D. C., Nelson,S. B. & Sur,M. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465 (1995).

    Article  CAS  Google Scholar 

  7. Gilbert,C. D. & Wiesel,T. N. Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9, 2432–2442 (1989).

    Article  CAS  Google Scholar 

  8. Kim,D.-S. & Bonhoeffer,T. Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex. Nature 370, 370–372 ( 1994).

    Article  ADS  CAS  Google Scholar 

  9. Godecke,I. & Bonhoeffer,T. Development of identical orientation maps for two eyes without common visual experience. Nature 379, 251–254 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Ruthazer,E. & Stryker,M. P. The role of activity in development of long range horizontal connections in area 17 of the ferret. J. Neurosci. 16, 7253–7269 (1996).

    Article  CAS  Google Scholar 

  11. Crair,M. C., Gillespie,D. C. & Stryker, M. P. The role of visual experience in the development of columns in cat visual cortex. Science 279, 566–570 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Sur,M., Angelucci,A. & Sharma, J. Rewiring cortex: The role of patterned activity in development and plasticity of neuronal circuits. J. Neurobiol. 41, 33–43 (1999).

    Article  CAS  Google Scholar 

  13. Sur,M., Garraghty,P. E. & Roe, A. W. Experimentally induced visual projections into auditory thalamus and cortex. Science 242, 1437– 1441 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Angelucci,A., Clasca,F., Bricolo,E., Cramer,K. S. & Sur,M. Experimentally induced retinal projections to the ferret auditory thalamus: development of clustered eye-specific patterns in a novel target. J. Neurosci. 17, 2040– 2055 (1997).

    Article  CAS  Google Scholar 

  15. Angelucci,A., Clascá,F. & Sur, M. Brainstem inputs to the ferret medial geniculate nucleus and the effect of early deafferentation on novel retinal projections to the auditory thalamus. J. Comp. Neurol. 400, 417–439 (1998).

    Article  CAS  Google Scholar 

  16. Roe,A. W., Pallas,S. L., Hahm J.-O. & Sur,M. A map of visual cortex induced in primary auditory cortex. Science 250, 818–820 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Roe,A. W., Pallas,S. L., Kwon,Y. H. & Sur,M. Visual projections routed to the auditory pathway in ferrets: receptive fields of visual neurons in the primary auditory cortex. J. Neurosci. 12, 3651–3664 (1992).

    Article  CAS  Google Scholar 

  18. Oppenheim,A. V. & Schafer,R. W. Digital Signal Processing (Prentice–Hall, New Jersey, 1975).

    MATH  Google Scholar 

  19. Rao,S. C., Toth,L. J. & Sur,M. Optically imaged maps of orientation preference in primary visual cortex of cats and ferrets. J. Comp. Neurol. 387, 358–370 (1997).

    Article  CAS  Google Scholar 

  20. Bonhoeffer,T. & Grinvald,A. The layout of iso-orientation domains in area 18 of cat visual cortex: optical imaging reveals a pinwheel-like organization. J. Neurosci. 13, 4157– 80 (1993).

    Article  CAS  Google Scholar 

  21. Tolhurst,D. J. & Thompson,I. D. On the variety of spatial frequency selectivities shown by neurons in the area 17 of cat. Proc. R. Soc. Lond. B 213, 183– 199 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Bonhoeffer,T. & Grinvald,A. in Brain Mapping: The Methods (eds Toga, A. W. & Mazziotta, J. C.) (Academic, New York, 1996).

    Google Scholar 

  23. Frostig,R. D., Lieke,E. E., Ts’o,D. Y. & Grinvald,A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high resolution optical imaging of intrinsic signals. Proc. Natl Acad. Sci. USA 87, 6082–6086 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Kowalski,N., Versnel,H. & Shamma,S. A. Comparison of responses in the anterior and primary auditory fields of the ferret cortex. J. Neurophysiol. 73, 1513–1520 (1995).

    Article  CAS  Google Scholar 

  25. Andersen,R. A., Knight,P. L. & Merzenich, M. M. The thalamocortical and corticothalamic connections of AI, AII, and the anterior auditory field (AAF) in the cat: evidence for two largely segregated systems of connections. J. Comp. Neurol. 194, 663–701 ( 1980).

    Article  CAS  Google Scholar 

  26. Imig,T. J. & Reale,R. A. Patterns of cortico-cortical connections related tonotopic maps in cat auditory cortex. J. Comp. Neurol. 192, 293–332 ( 1980).

    Article  CAS  Google Scholar 

  27. Pallas,S. L. & Sur,M. Visual projections induced into the auditory pathway of ferrets. II. Cortico-cortical connections of primary auditory cortex. J. Comp. Neurol. 336, 317– 333 (1993).

    Article  Google Scholar 

  28. Wallace,M. N., Kitzes,L. M. & Jones, E. G. Intrinsic inter- and intralaminar connections and their relationship to the tonotopic map in cat primary auditory cortex. Exp. Brain Res. 86, 527–544 (1991).

    CAS  PubMed  Google Scholar 

  29. Matsubara,J. A. & Phillips,D. P. Intracortical connections and their physiological correlates in the primary auditory cortex (AI) of the cat. J. Comp. Neurol. 268, 38 –48 (1988).

    Article  CAS  Google Scholar 

  30. Gao,W. & Pallas,S. L. Cross-modal reorganization of horizontal connectivity in auditory cortex without altering thalamocortical projections. J. Neurosci. 19, 7940– 7950 (1999).

    Article  CAS  Google Scholar 

  31. Hopkins,B. A new method for determining the type of distribution of plant individuals. Ann. Botany N. S. 18, 213– 227 (1954).

    Article  Google Scholar 

  32. Weliky,M & Katz,L. C. Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature 386, 680–685 ( 1997).

    Article  ADS  CAS  Google Scholar 

  33. Goodhill,G. J. Stimulating issues in cortical map development. Trends Neurosci. 20, 375–376 ( 1997).

    Article  CAS  Google Scholar 

  34. Chapman,B. & Stryker,M. P. Development of orientation selectivity in ferret visual cortex and effects of deprivation. J. Neurosci. 13, 5251–5262 ( 1993).

    Article  CAS  Google Scholar 

  35. Sengpiel,F., Stawinski,P. & Bonhoeffer, T. Influence of experience on orientation maps in cat visual cortex. Nature Neurosci. 2, 727– 732 (1999).

    Article  CAS  Google Scholar 

  36. Sharma,J, Angelucci,A., Rao,S. C. & Sur,M. Relationship of intrinsic connections to orientation maps in ferret primary visual cortex: iso-orientation domains and singularities. Soc. Neurosci. Abstr. 21 , 392 (1995).

    Google Scholar 

  37. Callaway,E. M. & Katz,L. C. Effects of binocular deprivation on the development of clustered horizontal connections in cat striate cortex. Proc. Natl Acad. Sci. USA 88, 745–749 (1991).

    Article  ADS  CAS  Google Scholar 

  38. Chapman,B., Stryker,M. P. & Bonhoeffer, T. Development of orientation preference maps in ferret primary visual cortex. J. Neurosci. 16, 6443–6453 (1996).

    Article  CAS  Google Scholar 

  39. Lowel,S. & Singer,W. Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science 255, 209–211 ( 1992).

    Article  ADS  CAS  Google Scholar 

  40. Schmidt,K. E, Kim,D.-S., Singer,W., Bonhoeffer,T. & Lowel, S. Functional specificity of long-range intrinsic and interhemispheric connections in the visual cortex of strabismic cats. J Neurosci. 17, 5480–5492 ( 1997)

    Article  CAS  Google Scholar 

  41. Roe,A. W., Garraghty,P. E., Esguerra, M. & Sur,M. Experimetally induced visual projections to the auditory thalamus in ferrets: evidence for a W cell pathway. J. Comp. Neurol. 334, 263–280 (1993).

    Article  CAS  Google Scholar 

  42. von Melchner,L., Pallas,S. L. & Sur,M. Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature 404, 871 –876 (2000).

    Article  ADS  CAS  Google Scholar 

  43. Worgotter,F. & Eysel,U. T. Quantitative determination of orientational and directional components in response to visual cortical cells to moving stimuli. Biol. Cybern. 57, 349– 355 (1987).

    Article  CAS  Google Scholar 

  44. Angelucci,A., Clascá,F. & Sur, M. Anterograde axonal tracing with the subunit B of cholera toxin: a highly sensitive immunohistochemical protocol for revealing fine axonal morphology in ault and neonatal brains. J. Neurosci. Methods 65, 101–112 ( 1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Rao and B. Sheth for participating in early experiments; G. Kalarickal for help in aggregation index calculations; J. Schummers for help with matlab; C. Leamey for an injection case; T. McHugh for technical assistance; R. Marini for veterinary care; and C. Moore, C. Hohnke, A. Lykman, V. Dragoi and C. Rivadulla for comments on the manuscript. We also thank T. Bonhoeffer and S. Lowel for being instrumental in initiating this work. Supported by grants from the NIH (M.S).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, J., Angelucci, A. & Sur, M. Induction of visual orientation modules in auditory cortex. Nature 404, 841–847 (2000). https://doi.org/10.1038/35009043

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35009043

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing