Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sintering dense nanocrystalline ceramics without final-stage grain growth

Abstract

Sintering is the process whereby interparticle pores in a granular material are eliminated by atomic diffusion driven by capillary forces. It is the preferred manufacturing method for industrial ceramics. The observation of Burke and Coble1,2 that certain crystalline granular solids could gain full density and translucency by solid-state sintering was an important milestone for modern technical ceramics. But these final-stage sintering processes are always accompanied by rapid grain growth3,4,5,6, because the capillary driving forces for sintering (involving surfaces) and grain growth (involving grain boundaries) are comparable in magnitude, both being proportional to the reciprocal grain size. This has greatly hampered efforts to produce dense materials with nanometre-scale structure (grain size less than 100 nm)4,8, leading many researchers to resort to the ‘brute force’ approach of high-pressure consolidation at elevated temperatures7,8,9. Here we show that fully dense cubic Y2O3 (melting point, 2,439 °C) with a grain size of 60 nm can be prepared by a simple two-step sintering method, at temperatures of about 1,000 °C without applied pressure. The suppression of the final-stage grain growth is achieved by exploiting the difference in kinetics between grain-boundary diffusion and grain-boundary migration. Such a process should facilitate the cost-effective preparation of other nanocrystalline materials for practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increasing grain size of Y2O3 with density in normal sintering. (Heating schedule shown in inset).
Figure 2
Figure 3: Normalized densification rate versus relative density during second-step sintering.
Figure 4: Kinetic window for reaching full density without grain growth.
Figure 5: Microstructure of fully dense Y2O3 doped with 1% Mg.

Similar content being viewed by others

References

  1. Coble, R. L. Sintering crystalline solids. J. Appl. Phys. 32, 787–799 (1961).

    Article  ADS  CAS  Google Scholar 

  2. Coble, R. L. & Burke, J. E. in Progress in Ceramic Science Vol. 3 (ed. Burke, J. E.) 197–251 (New York, 1963).

    Google Scholar 

  3. Brook, R. J. in Treatise on Materials Science and Technology Vol. 9 (ed. Wang, F. F. Y.) 331–363 (Academic, New York, 1976).

    Google Scholar 

  4. Coble, R. L. & Cannon, R. M. in Processing of Crystalline Ceramics (ed. Palmour, H. III) 151–168 (Materials Science Research Vol. 11, Plenum, New York, 1978).

    Book  Google Scholar 

  5. Coble, R. L., Song, H., Brook, R. J., Handwerker, C. A. & Dynys, J. M. in Structure and Properties of MgO and Al2O 3 Ceramics (ed. Kingery, W. D.) 839–852 (Vol. 10, Advances in Ceramics, American Ceramic Society, Westerville, OH, 1984).

    Google Scholar 

  6. Cameron, C. P. & Raj, R. Grain growth transition during sintering of colloidally prepared alumina powder compacts. J. Am. Ceram. Soc. 71, 1031–1035 ( 1988).

    Article  CAS  Google Scholar 

  7. Gleiter, H. Nanocrystalline materials. Prog. Mater. Sci. 33, 223–315 (1989).

    Article  CAS  Google Scholar 

  8. Mayo, M. J. Processing of nanocrystalline ceramics from ultrafine particles. Int. Mater. Rev. 41, 85–115 (1996).

    Article  CAS  Google Scholar 

  9. Liao, S.-C., Chen, Y.-J., Kear, B. H. & Mayo, W. E. High pressure/low temperature sintering of nanocrystalline alumina. Nanostruct. Mater. 10, 1063–1079 ( 1998).

    Article  CAS  Google Scholar 

  10. Chen, P.-L. & Chen, I.-W. Grain boundary mobility in Y 2O3: defect mechanism and dopant effects. J. Am. Ceram. Soc. 79, 1801–1809 (1996).

    Article  CAS  Google Scholar 

  11. Chen, P.-L. & Chen, I.-W. Sintering of fine oxide powder: I, microstructural evolution. J. Am. Ceram. Soc. 79 , 3129–3141 (1996).

    Article  CAS  Google Scholar 

  12. Chen, P.-L. & Chen, I.-W. Sintering of fine oxide powders: II, sintering mechanisms. J. Am. Ceram. Soc. 80, 637–645 (1997).

    Article  CAS  Google Scholar 

  13. Kingery, W. D. & Francois, B. in Sintering and Related Phenomena (eds Kuczynski, G. C., Hooton, N. S. & Gibbon, C. F.) 471–496 (Gordon & Breach, New York, 1967).

    Google Scholar 

  14. McFadden, S. X., Mishra, R. S., Valiev, R. Z., Zhilyaev, A. P. & Mukherjee, A. K. Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature 396 , 684–686 (1999).

    Article  ADS  Google Scholar 

  15. Wakai, F. et al. A superplastic covalent crystal composite. Nature 344, 421–423 ( 1990).

    Article  ADS  CAS  Google Scholar 

  16. Chen, I.-W. & Xue, L.-A. Development of superplastic structure ceramics. J. Am. Ceram. Soc. 73, 2585– 2609 (1990).

    Article  CAS  Google Scholar 

  17. Herring, C. Effect of change of scale on sintering phenomena. J. Appl. Phys. 21, 301–303 ( 1950).

    Article  ADS  CAS  Google Scholar 

  18. Zhao, J. & Harmer, M. P. Sintering of ultra-high purity alumina doped simultaneously with MgO and FeO. J. Am. Ceram. Soc. 70, 860–866 ( 1987).

    Article  CAS  Google Scholar 

  19. Hansen, J. D., Rusin, R. P., Teng, M.-H. & Johnson, D.-L. Combined stage sintering model. J. Am. Ceram. Soc. 75, 1129–1135 (1992).

    Article  CAS  Google Scholar 

  20. Czubayko, L., Sursaeva, V. G., Gottstein, G. & Shvindlerman, L. S. Influence of triple junctions on grain boundary motion. Acta Mater. 46, 5863–5871 ( 1998).

    Article  CAS  Google Scholar 

  21. Land, T. A., Martin, T. L., Potapenko, S., Palmore, G. T. & De Yoreo, J. J. Recovery of surfaces from impurity poisoning during crystal growth. Nature 399, 442–445 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Cannon, R. M., Rhodes, W. H. & Heuer, A. H. Plastic deformation of fine-grained alumina: I. interface-controlled diffusional creep. J. Am. Ceram. Soc. 63, 48–53 (1980).

    Article  Google Scholar 

  23. Arzt, E., Ashby, M. F. & Verrall, R. A. Interface-controlled diffusional creep. Acta Metall. 31, 1977–1989 (1983).

    Article  CAS  Google Scholar 

  24. Kumar, K. P. et al. Densification of nanostructured titania assisted by a phase transformation. Nature 358, 48– 51 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Klein, S., Winterer, M. & Hahn, H. Reduced pressure chemical vapor synthesis of nano-crystalline silicon carbide powders. Adv. Mater. 4, 143–149 (1998).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Basic Energy Sciences, using facilities supported by the NSF MRSEC at the University of Pennsylvania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I.-Wei Chen.

Supplementary information

41586_2000_BF35004548_MOESM1_ESM.doc

Table 1 (2-step sintering results of undoped and doped Y2O 3 compacts with an initial powder particle size of 30 nm) and table 2 (with an initial powder particle size of 10 nm). (DOC 10 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, IW., Wang, XH. Sintering dense nanocrystalline ceramics without final-stage grain growth . Nature 404, 168–171 (2000). https://doi.org/10.1038/35004548

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35004548

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing